Goto

Collaborating Authors

 Katoen, Joost-Pieter


Natural Strategic Ability in Stochastic Multi-Agent Systems

arXiv.org Artificial Intelligence

Strategies synthesized using formal methods can be complex and often require infinite memory, which does not correspond to the expected behavior when trying to model Multi-Agent Systems (MAS). To capture such behaviors, natural strategies are a recently proposed framework striking a balance between the ability of agents to strategize with memory and the model-checking complexity, but until now has been restricted to fully deterministic settings. For the first time, we consider the probabilistic temporal logics PATL and PATL* under natural strategies (NatPATL and NatPATL*, resp.). As main result we show that, in stochastic MAS, NatPATL model-checking is NP-complete when the active coalition is restricted to deterministic strategies. We also give a 2NEXPTIME complexity result for NatPATL* with the same restriction. In the unrestricted case, we give an EXPSPACE complexity for NatPATL and 3EXPSPACE complexity for NatPATL*.


Automatically Finding the Right Probabilities in Bayesian Networks

Journal of Artificial Intelligence Research

This paper presents alternative techniques for inference on classical Bayesian networks in which all probabilities are fixed, and for synthesis problems when conditional probability tables (CPTs) in such networks contain symbolic parameters rather than concrete probabilities. The key idea is to exploit probabilistic model checking as well as its recent extension to parameter synthesis techniques for parametric Markov chains. To enable this, the Bayesian networks are transformed into Markov chains and their objectives are mapped onto probabilistic temporal logic formulas. For exact inference, we compare probabilistic model checking to weighted model counting on various Bayesian network benchmarks. We contrast symbolic model checking using multi-terminal binary (aka: algebraic) decision diagrams to symbolic inference using proba- bilistic sentential decision diagrams, symbolic data structures that are tailored to Bayesian networks. For the parametric setting, we describe how our techniques can be used for various synthesis problems such as computing sensitivity functions (and values), simple and difference parameter tuning and ratio parameter tuning. Our parameter synthesis techniques are applicable to arbitrarily many, possibly dependent, parameters that may occur in multiple CPTs. This lifts restrictions, e.g., on the number of parametrized CPTs, or on parameter dependencies between several CPTs, that exist in the literature. Experiments on several benchmarks show that our parameter synthesis techniques can treat parameter synthesis for Bayesian networks (with hundreds of unknown parameters) that are out of reach for existing techniques.


Finding an $\epsilon$-close Variation of Parameters in Bayesian Networks

arXiv.org Artificial Intelligence

This paper addresses the $\epsilon$-close parameter tuning problem for Bayesian Networks (BNs): find a minimal $\epsilon$-close amendment of probability entries in a given set of (rows in) conditional probability tables that make a given quantitative constraint on the BN valid. Based on the state-of-the-art "region verification" techniques for parametric Markov chains, we propose an algorithm whose capabilities go beyond any existing techniques. Our experiments show that $\epsilon$-close tuning of large BN benchmarks with up to 8 parameters is feasible. In particular, by allowing (i) varied parameters in multiple CPTs and (ii) inter-CPT parameter dependencies, we treat subclasses of parametric BNs that have received scant attention so far.


Under-Approximating Expected Total Rewards in POMDPs

arXiv.org Artificial Intelligence

We consider the problem: is the optimal expected total reward to reach a goal state in a partially observable Markov decision process (POMDP) below a given threshold? We tackle this -- generally undecidable -- problem by computing under-approximations on these total expected rewards. This is done by abstracting finite unfoldings of the infinite belief MDP of the POMDP. The key issue is to find a suitable under-approximation of the value function. We provide two techniques: a simple (cut-off) technique that uses a good policy on the POMDP, and a more advanced technique (belief clipping) that uses minimal shifts of probabilities between beliefs. We use mixed-integer linear programming (MILP) to find such minimal probability shifts and experimentally show that our techniques scale quite well while providing tight lower bounds on the expected total reward.


Convex Optimization for Parameter Synthesis in MDPs

arXiv.org Artificial Intelligence

Probabilistic model checking aims to prove whether a Markov decision process (MDP) satisfies a temporal logic specification. The underlying methods rely on an often unrealistic assumption that the MDP is precisely known. Consequently, parametric MDPs (pMDPs) extend MDPs with transition probabilities that are functions over unspecified parameters. The parameter synthesis problem is to compute an instantiation of these unspecified parameters such that the resulting MDP satisfies the temporal logic specification. We formulate the parameter synthesis problem as a quadratically constrained quadratic program (QCQP), which is nonconvex and is NP-hard to solve in general. We develop two approaches that iteratively obtain locally optimal solutions. The first approach exploits the so-called convex-concave procedure (CCP), and the second approach utilizes a sequential convex programming (SCP) method. The techniques improve the runtime and scalability by multiple orders of magnitude compared to black-box CCP and SCP by merging ideas from convex optimization and probabilistic model checking. We demonstrate the approaches on a satellite collision avoidance problem with hundreds of thousands of states and tens of thousands of parameters and their scalability on a wide range of commonly used benchmarks.


Fine-Tuning the Odds in Bayesian Networks

arXiv.org Artificial Intelligence

This paper proposes various new analysis techniques for Bayes networks in which conditional probability tables (CPTs) may contain symbolic variables. The key idea is to exploit scalable and powerful techniques for synthesis problems in parametric Markov chains. Our techniques are applicable to arbitrarily many, possibly dependent parameters that may occur in various CPTs. This lifts the severe restrictions on parameters, e.g., by restricting the number of parametrized CPTs to one or two, or by avoiding parameter dependencies between several CPTs, in existing works for parametric Bayes networks (pBNs). We describe how our techniques can be used for various pBN synthesis problems studied in the literature such as computing sensitivity functions (and values), simple and difference parameter tuning, ratio parameter tuning, and minimal change tuning. Experiments on several benchmarks show that our prototypical tool built on top of the probabilistic model checker Storm can handle several hundreds of parameters.


Inductive Synthesis for Probabilistic Programs Reaches New Horizons

arXiv.org Artificial Intelligence

This paper presents a novel method for the automated synthesis of probabilistic programs. The starting point is a program sketch representing a finite family of finite-state Markov chains with related but distinct topologies, and a PCTL specification. The method builds on a novel inductive oracle that greedily generates counter-examples (CEs) for violating programs and uses them to prune the family. These CEs leverage the semantics of the family in the form of bounds on its best- and worst-case behaviour provided by a deductive oracle using an MDP abstraction. The method further monitors the performance of the synthesis and adaptively switches between the inductive and deductive reasoning. Our experiments demonstrate that the novel CE construction provides a significantly faster and more effective pruning strategy leading to acceleration of the synthesis process on a wide range of benchmarks. For challenging problems, such as the synthesis of decentralized partially-observable controllers, we reduce the run-time from a day to minutes.


Bayesian Inference by Symbolic Model Checking

arXiv.org Artificial Intelligence

This paper applies probabilistic model checking techniques for discrete Markov chains to inference in Bayesian networks. We present a simple translation from Bayesian networks into tree-like Markov chains such that inference can be reduced to computing reachability probabilities. Using a prototypical implementation on top of the Storm model checker, we show that symbolic data structures such as multi-terminal BDDs (MTBDDs) are very effective to perform inference on large Bayesian network benchmarks. We compare our result to inference using probabilistic sentential decision diagrams and vtrees, a scalable symbolic technique in AI inference tools.


Verification of indefinite-horizon POMDPs

arXiv.org Artificial Intelligence

Markov decision processes are the model to reason about systems involving nondeterministic choice and probabilistic branching. They have widespread usage in planning and scheduling, robotics, and formal methods. In the latter, the key verification question is whether for any policy, i.e., for any resolution of the nondeterminism, the probability to reach the bad states is below a threshold [3]. The verification question may be efficiently analysed using a variety of techniques such as linear programming, value iteration, or policy iteration, readily available in mature tools such as Storm [15], Prism [22] and Modest [13]. However, those verification results are often overly pessimistic.


Simple Strategies in Multi-Objective MDPs (Technical Report)

arXiv.org Artificial Intelligence

We consider the verification of multiple expected reward objectives at once on Markov decision processes (MDPs). This enables a trade-off analysis among multiple objectives by obtaining the Pareto front. We focus on strategies that are easy to employ and implement. That is, strategies that are pure (no randomization) and have bounded memory. We show that checking whether a point is achievable by a pure stationary strategy is NP-complete, even for two objectives, and we provide an MILP encoding to solve the corresponding problem. The bounded memory case can be reduced to the stationary one by a product construction. Experimental results using \Storm and Gurobi show the feasibility of our algorithms.