Kasiviswanathan, Shiva
Contextual Online False Discovery Rate Control
Chen, Shiyun, Kasiviswanathan, Shiva
Multiple hypothesis testing, a situation when we wish to consider many hypotheses, is a core problem in statistical inference that arises in almost every scientific field. In this setting, controlling the false discovery rate (FDR), which is the expected proportion of type I error, is an important challenge for making meaningful inferences. In this paper, we consider the problem of controlling FDR in an online manner. Concretely, we consider an ordered, possibly infinite, sequence of hypotheses, arriving one at each timestep, and for each hypothesis we observe a p-value along with a set of features specific to that hypothesis. The decision whether or not to reject the current hypothesis must be made immediately at each timestep, before the next hypothesis is observed. The model of multi-dimensional feature set provides a very general way of leveraging the auxiliary information in the data which helps in maximizing the number of discoveries. We propose a new class of powerful online testing procedures, where the rejections thresholds (significance levels) are learnt sequentially by incorporating contextual information and previous results. We prove that any rule in this class controls online FDR under some standard assumptions. We then focus on a subclass of these procedures, based on weighting significance levels, to derive a practical algorithm that learns a parametric weight function in an online fashion to gain more discoveries. We also theoretically prove, in a stylized setting, that our proposed procedures would lead to an increase in the achieved statistical power over a popular online testing procedure proposed by Javanmard & Montanari (2018). Finally, we demonstrate the favorable performance of our procedure, by comparing it to state-of-the-art online multiple testing procedures, on both synthetic data and real data generated from different applications.
Subsampled R\'enyi Differential Privacy and Analytical Moments Accountant
Wang, Yu-Xiang, Balle, Borja, Kasiviswanathan, Shiva
We study the problem of subsampling in differential privacy (DP), a question that is the centerpiece behind many successful differentially private machine learning algorithms. Specifically, we provide a tight upper bound on the R\'enyi Differential Privacy (RDP) (Mironov, 2017) parameters for algorithms that: (1) subsample the dataset, and then (2) apply a randomized mechanism M to the subsample, in terms of the RDP parameters of M and the subsampling probability parameter. This result generalizes the classic subsampling-based "privacy amplification" property of $(\epsilon,\delta)$-differential privacy that applies to only one fixed pair of $(\epsilon,\delta)$, to a stronger version that exploits properties of each specific randomized algorithm and satisfies an entire family of $(\epsilon(\delta),\delta)$-differential privacy for all $\delta\in [0,1]$. Our experiments confirm the advantage of using our techniques over keeping track of $(\epsilon,\delta)$ directly, especially in the setting where we need to compose many rounds of data access.
Verifying Properties of Binarized Deep Neural Networks
Narodytska, Nina (VMware Research) | Kasiviswanathan, Shiva (Amazon) | Ryzhyk, Leonid (VMware Research) | Sagiv, Mooly (VMware Research) | Walsh, Toby (UNSW)
Understanding properties of deep neural networks is an important challenge in deep learning. In this paper, we take a step in this direction by proposing a rigorous way of verifying properties of a popular class of neural networks, Binarized Neural Networks, using the well-developed means of Boolean satisfiability. Our main contribution is a construction that creates a representation of a binarized neural network as a Boolean formula. Our encoding is the first exact Boolean representation of a deep neural network. Using this encoding, we leverage the power of modern SAT solvers along with a proposed counterexample-guided search procedure to verify various properties of these networks. A particular focus will be on the critical property of robustness to adversarial perturbations. For this property, our experimental results demonstrate that our approach scales to medium-size deep neural networks used in image classification tasks. To the best of our knowledge, this is the first work on verifying properties of deep neural networks using an exact Boolean encoding of the network.
Online Dictionary Learning on Symmetric Positive Definite Manifolds with Vision Applications
Zhang, Shengping (Harbin Institute of Technology at Weihai) | Kasiviswanathan, Shiva (General Electric Global Research) | Yuen, Pong C. (Hong Kong Baptist University) | Harandi, Mehrtash (NICTA and Australian National University)
Symmetric Positive Definite (SPD) matrices in the form of region covariances are considered rich descriptors for images and videos. Recent studies suggest that exploiting the Riemannian geometry of the SPD manifolds could lead to improved performances for vision applications. For tasks involving processing large-scale and dynamic data in computer vision, the underlying model is required to progressively and efficiently adapt itself to the new and unseen observations. Motivated by these requirements, this paper studies the problem of online dictionary learning on the SPD manifolds. We make use of the Stein divergence to recast the problem of online dictionary learning on the manifolds to a problem in Reproducing Kernel Hilbert Spaces, for which, we develop efficient algorithms by taking into account the geometric structure of the SPD manifolds. To our best knowledge, our work is the first study that provides a solution for online dictionary learning on the SPD manifolds. Empirical results on both large-scale image classification task and dynamic video processing tasks validate the superior performance of our approach as compared to several state-of-the-art algorithms.
Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization
Avron, Haim, Kale, Satyen, Kasiviswanathan, Shiva, Sindhwani, Vikas
We describe novel subgradient methods for a broad class of matrix optimization problems involving nuclear norm regularization. Unlike existing approaches, our method executes very cheap iterations by combining low-rank stochastic subgradients with efficient incremental SVD updates, made possible by highly optimized and parallelizable dense linear algebra operations on small matrices. Our practical algorithms always maintain a low-rank factorization of iterates that can be conveniently held in memory and efficiently multiplied to generate predictions in matrix completion settings. Empirical comparisons confirm that our approach is highly competitive with several recently proposed state-of-the-art solvers for such problems.