Goto

Collaborating Authors

 Karl Ridgeway


Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning

Neural Information Processing Systems

The focus in machine learning has branched beyond training classifiers on a single task to investigating how previously acquired knowledge in a source domain can be leveraged to facilitate learning in a related target domain, known as inductive transfer learning. Three active lines of research have independently explored transfer learning using neural networks. In weight transfer, a model trained on the source domain is used as an initialization point for a network to be trained on the target domain. In deep metric learning, the source domain is used to construct an embedding that captures class structure in both the source and target domains. In few-shot learning, the focus is on generalizing well in the target domain based on a limited number of labeled examples. We compare state-of-the-art methods from these three paradigms and also explore hybrid adapted-embedding methods that use limited target-domain data to fine tune embeddings constructed from sourcedomain data. We conduct a systematic comparison of methods in a variety of domains, varying the number of labeled instances available in the target domain (k), as well as the number of target-domain classes. We reach three principal conclusions: (1) Deep embeddings are far superior, compared to weight transfer, as a starting point for inter-domain transfer or model re-use (2) Our hybrid methods robustly outperform every few-shot learning and every deep metric learning method previously proposed, with a mean error reduction of 34% over state-of-the-art.


Learning Deep Disentangled Embeddings With the F-Statistic Loss

Neural Information Processing Systems

Deep-embedding methods aim to discover representations of a domain that make explicit the domain's class structure and thereby support few-shot learning. Disentangling methods aim to make explicit compositional or factorial structure. We combine these two active but independent lines of research and propose a new paradigm suitable for both goals. We propose and evaluate a novel loss function based on the F statistic, which describes the separation of two or more distributions. By ensuring that distinct classes are well separated on a subset of embedding dimensions, we obtain embeddings that are useful for few-shot learning.


Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning

Neural Information Processing Systems

The focus in machine learning has branched beyond training classifiers on a single task to investigating how previously acquired knowledge in a source domain can be leveraged to facilitate learning in a related target domain, known as inductive transfer learning. Three active lines of research have independently explored transfer learning using neural networks. In weight transfer, a model trained on the source domain is used as an initialization point for a network to be trained on the target domain. In deep metric learning, the source domain is used to construct an embedding that captures class structure in both the source and target domains. In few-shot learning, the focus is on generalizing well in the target domain based on a limited number of labeled examples. We compare state-of-the-art methods from these three paradigms and also explore hybrid adapted-embedding methods that use limited target-domain data to fine tune embeddings constructed from sourcedomain data. We conduct a systematic comparison of methods in a variety of domains, varying the number of labeled instances available in the target domain (k), as well as the number of target-domain classes. We reach three principal conclusions: (1) Deep embeddings are far superior, compared to weight transfer, as a starting point for inter-domain transfer or model re-use (2) Our hybrid methods robustly outperform every few-shot learning and every deep metric learning method previously proposed, with a mean error reduction of 34% over state-of-the-art.


Learning Deep Disentangled Embeddings With the F-Statistic Loss

Neural Information Processing Systems

Deep-embedding methods aim to discover representations of a domain that make explicit the domain's class structure and thereby support few-shot learning. Disentangling methods aim to make explicit compositional or factorial structure. We combine these two active but independent lines of research and propose a new paradigm suitable for both goals. We propose and evaluate a novel loss function based on the F statistic, which describes the separation of two or more distributions. By ensuring that distinct classes are well separated on a subset of embedding dimensions, we obtain embeddings that are useful for few-shot learning.