Goto

Collaborating Authors

 Karim, Nazmul


LatentEditor: Text Driven Local Editing of 3D Scenes

arXiv.org Artificial Intelligence

While neural fields have made significant strides in view synthesis and scene reconstruction, editing them poses a formidable challenge due to their implicit encoding of geometry and texture information from multi-view inputs. In this paper, we introduce \textsc{LatentEditor}, an innovative framework designed to empower users with the ability to perform precise and locally controlled editing of neural fields using text prompts. Leveraging denoising diffusion models, we successfully embed real-world scenes into the latent space, resulting in a faster and more adaptable NeRF backbone for editing compared to traditional methods. To enhance editing precision, we introduce a delta score to calculate the 2D mask in the latent space that serves as a guide for local modifications while preserving irrelevant regions. Our novel pixel-level scoring approach harnesses the power of InstructPix2Pix (IP2P) to discern the disparity between IP2P conditional and unconditional noise predictions in the latent space. The edited latents conditioned on the 2D masks are then iteratively updated in the training set to achieve 3D local editing. Our approach achieves faster editing speeds and superior output quality compared to existing 3D editing models, bridging the gap between textual instructions and high-quality 3D scene editing in latent space. We show the superiority of our approach on four benchmark 3D datasets, LLFF, IN2N, NeRFStudio and NeRF-Art.


A Survey of Recommender System Techniques and the Ecommerce Domain

arXiv.org Artificial Intelligence

In this big data era, it is hard for the current generation to find the right data from the huge amount of data contained within online platforms. In such a situation, there is a need for an information filtering system that might help them find the information they are looking for. In recent years, a research field has emerged known as recommender systems. Recommenders have become important as they have many real-life applications. This paper reviews the different techniques and developments of recommender systems in e-commerce, e-tourism, e-resources, e-government, e-learning, and e-library. By analyzing recent work on this topic, we will be able to provide a detailed overview of current developments and identify existing difficulties in recommendation systems. The final results give practitioners and researchers the necessary guidance and insights into the recommendation system and its application.


The Prominence of Artificial Intelligence in COVID-19

arXiv.org Artificial Intelligence

In December 2019, a novel virus called COVID-19 had caused an enormous number of causalities to date. The battle with the novel Coronavirus is baffling and horrifying after the Spanish Flu 2019. While the front-line doctors and medical researchers have made significant progress in controlling the spread of the highly contiguous virus, technology has also proved its significance in the battle. Moreover, Artificial Intelligence has been adopted in many medical applications to diagnose many diseases, even baffling experienced doctors. Therefore, this survey paper explores the methodologies proposed that can aid doctors and researchers in early and inexpensive methods of diagnosis of the disease. Most developing countries have difficulties carrying out tests using the conventional manner, but a significant way can be adopted with Machine and Deep Learning. On the other hand, the access to different types of medical images has motivated the researchers. As a result, a mammoth number of techniques are proposed. This paper first details the background knowledge of the conventional methods in the Artificial Intelligence domain. Following that, we gather the commonly used datasets and their use cases to date. In addition, we also show the percentage of researchers adopting Machine Learning over Deep Learning. Thus we provide a thorough analysis of this scenario. Lastly, in the research challenges, we elaborate on the problems faced in COVID-19 research, and we address the issues with our understanding to build a bright and healthy environment.