Goto

Collaborating Authors

 Karim, Hezerul Abdul


Advancing Vehicle Plate Recognition: Multitasking Visual Language Models with VehiclePaliGemma

arXiv.org Artificial Intelligence

License plate recognition (LPR) involves automated systems that utilize cameras and computer vision to read vehicle license plates. Such plates collected through LPR can then be compared against databases to identify stolen vehicles, uninsured drivers, crime suspects, and more. The LPR system plays a significant role in saving time for institutions such as the police force. In the past, LPR relied heavily on Optical Character Recognition (OCR), which has been widely explored to recognize characters in images. Usually, collected plate images suffer from various limitations, including noise, blurring, weather conditions, and close characters, making the recognition complex. Existing LPR methods still require significant improvement, especially for distorted images. To fill this gap, we propose utilizing visual language models (VLMs) such as OpenAI GPT4o, Google Gemini 1.5, Google PaliGemma (Pathways Language and Image model + Gemma model), Meta Llama 3.2, Anthropic Claude 3.5 Sonnet, LLaVA, NVIDIA VILA, and moondream2 to recognize such unclear plates with close characters. This paper evaluates the VLM's capability to address the aforementioned problems. Additionally, we introduce ``VehiclePaliGemma'', a fine-tuned Open-sourced PaliGemma VLM designed to recognize plates under challenging conditions. We compared our proposed VehiclePaliGemma with state-of-the-art methods and other VLMs using a dataset of Malaysian license plates collected under complex conditions. The results indicate that VehiclePaliGemma achieved superior performance with an accuracy of 87.6\%. Moreover, it is able to predict the car's plate at a speed of 7 frames per second using A100-80GB GPU. Finally, we explored the multitasking capability of VehiclePaliGemma model to accurately identify plates containing multiple cars of various models and colors, with plates positioned and oriented in different directions.


Localization and Classification of Parasitic Eggs in Microscopic Images Using an EfficientDet Detector

arXiv.org Artificial Intelligence

IPIs caused by protozoan and helminth parasites are among the most common infections in humans in LMICs. They are regarded as a severe public health concern, as they cause a wide array of potentially detrimental health conditions. Researchers have been developing pattern recognition techniques for the automatic identification of parasite eggs in microscopic images. Existing solutions still need improvements to reduce diagnostic errors and generate fast, efficient, and accurate results. Our paper addresses this and proposes a multi-modal learning detector to localize parasitic eggs and categorize them into 11 categories. The experiments were conducted on the novel Chula-ParasiteEgg-11 dataset that was used to train both EfficientDet model with EfficientNet-v2 backbone and EfficientNet-B7+SVM. The dataset has 11,000 microscopic training images from 11 categories. Our results show robust performance with an accuracy of 92%, and an F1 score of 93%. Additionally, the IOU distribution illustrates the high localization capability of the detector.