Goto

Collaborating Authors

 Karaoglu, Sezer


LumiNet: Latent Intrinsics Meets Diffusion Models for Indoor Scene Relighting

arXiv.org Artificial Intelligence

We introduce LumiNet, a novel architecture that leverages generative models and latent intrinsic representations for effective lighting transfer. Given a source image and a target lighting image, LumiNet synthesizes a relit version of the source scene that captures the target's lighting. Our approach makes two key contributions: a data curation strategy from the StyleGAN-based relighting model for our training, and a modified diffusion-based ControlNet that processes both latent intrinsic properties from the source image and latent extrinsic properties from the target image. We further improve lighting transfer through a learned adaptor (MLP) that injects the target's latent extrinsic properties via cross-attention and fine-tuning. Unlike traditional ControlNet, which generates images with conditional maps from a single scene, LumiNet processes latent representations from two different images - preserving geometry and albedo from the source while transferring lighting characteristics from the target. Experiments demonstrate that our method successfully transfers complex lighting phenomena including specular highlights and indirect illumination across scenes with varying spatial layouts and materials, outperforming existing approaches on challenging indoor scenes using only images as input.


Multi-Loss Weighting with Coefficient of Variations

arXiv.org Artificial Intelligence

Many interesting tasks in machine learning and computer vision are learned by optimising an objective function defined as a weighted linear combination of multiple losses. The final performance is sensitive to choosing the correct (relative) weights for these losses. Finding a good set of weights is often done by adopting them into the set of hyper-parameters, which are set using an extensive grid search. This is computationally expensive. In this paper, the weights are defined based on properties observed while training the model, including the specific batch loss, the average loss, and the variance for each of the losses. An additional advantage is that the defined weights evolve during training, instead of using static loss weights. In literature, loss weighting is mostly used in a multi-task learning setting, where the different tasks obtain different weights. However, there is a plethora of single-task multi-loss problems that can benefit from automatic loss weighting. In this paper, it is shown that these multi-task approaches do not work on single tasks. Instead, a method is proposed that automatically and dynamically tunes loss weights throughout training specifically for single-task multi-loss problems. The method incorporates a measure of uncertainty to balance the losses. The validity of the approach is shown empirically for different tasks on multiple datasets.