Goto

Collaborating Authors

 Karam, Zahi


Predicting Postoperative Atrial Fibrillation from Independent ECG Components

AAAI Conferences

Postoperative atrial fibrillation (PAF) occurs in 10% to 65% of the patients undergoing cardiothoracic surgery. It is associated with increased post-surgical mortality and morbidity, and results in longer and more expensive hospital stays. Accurately stratifying patients for PAF allows for selective use of prophylactic therapies (e.g., amiodarone). Unfortunately, existing tools to stratify patients for PAF fail to provide clinically adequate discrimination. Our research addresses this situation through the development of novel electrocardiographic(ECG) markers to identify patients at risk of PAF. As a first step, we explore an eigen-decomposition approach that partitions ECG signals into atrial and ventricular components by exploiting knowledge of the underlying cardiac cycle. We then quantify electrical instability in the myocardium manifesting as probabilistic variations in atrial ECG morphology to assess therisk of PAF. When evaluated on 385 patients undergoing cardiac surgery, this approach of stratifying patients for PAF through an analysis of morphologic variability within decoupled atrial ECG demonstrated substantial promise and improved net reclassification by over 53% relative to the use of baseline clinical characteristics.


Speaker Comparison with Inner Product Discriminant Functions

Neural Information Processing Systems

Speaker comparison, the process of finding the speaker similarity between two speech signals, occupies a central role in a variety of applications---speaker verification, clustering, and identification. Speaker comparison can be placed in a geometric framework by casting the problem as a model comparison process. For a given speech signal, feature vectors are produced and used to adapt a Gaussian mixture model (GMM). Speaker comparison can then be viewed as the process of compensating and finding metrics on the space of adapted models. We propose a framework, inner product discriminant functions (IPDFs), which extends many common techniques for speaker comparison: support vector machines, joint factor analysis, and linear scoring. The framework uses inner products between the parameter vectors of GMM models motivated by several statistical methods. Compensation of nuisances is performed via linear transforms on GMM parameter vectors. Using the IPDF framework, we show that many current techniques are simple variations of each other. We demonstrate, on a 2006 NIST speaker recognition evaluation task, new scoring methods using IPDFs which produce excellent error rates and require significantly less computation than current techniques.