Goto

Collaborating Authors

 Karaletsos, Theofanis


Variational Control for Guidance in Diffusion Models

arXiv.org Machine Learning

Diffusion models exhibit excellent sample quality, but existing guidance methods often require additional model training or are limited to specific tasks. We revisit guidance in diffusion models from the perspective of variational inference and control, introducing Diffusion Trajectory Matching (DTM) that enables guiding pretrained diffusion trajectories to satisfy a terminal cost. DTM unifies a broad class of guidance methods and enables novel instantiations. We introduce a new method within this framework that achieves state-of-the-art results on several linear and (blind) non-linear inverse problems without requiring additional model training or modifications. For instance, in ImageNet non-linear deblurring, our model achieves an FID score of 34.31, significantly improving over the best pretrained-method baseline (FID 78.07). We will make the code available in a future update.


Adjusting Pretrained Backbones for Performativity

arXiv.org Artificial Intelligence

With the widespread deployment of deep learning models, they influence their environment in various ways. The induced distribution shifts can lead to unexpected performance degradation in deployed models. Existing methods to anticipate performativity typically incorporate information about the deployed model into the feature vector when predicting future outcomes. While enjoying appealing theoretical properties, modifying the input dimension of the prediction task is often not practical. To address this, we propose a novel technique to adjust pretrained backbones for performativity in a modular way, achieving better sample efficiency and enabling the reuse of existing deep learning assets. Focusing on performative label shift, the key idea is to train a shallow adapter module to perform a Bayes-optimal label shift correction to the backbone's logits given a sufficient statistic of the model to be deployed. As such, our framework decouples the construction of input-specific feature embeddings from the mechanism governing performativity. Motivated by dynamic benchmarking as a use-case, we evaluate our approach under adversarial sampling, for vision and language tasks. We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations. More broadly, our work provides a first baseline for addressing performativity in deep learning.


Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI

arXiv.org Artificial Intelligence

In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective reveals a multitude of overlooked metrics, tasks, and data types, such as uncertainty, active and continual learning, and scientific data, that demand attention. Bayesian deep learning (BDL) constitutes a promising avenue, offering advantages across these diverse settings. This paper posits that BDL can elevate the capabilities of deep learning. It revisits the strengths of BDL, acknowledges existing challenges, and highlights some exciting research avenues aimed at addressing these obstacles. Looking ahead, the discussion focuses on possible ways to combine large-scale foundation models with BDL to unlock their full potential.


Modelling Cellular Perturbations with the Sparse Additive Mechanism Shift Variational Autoencoder

arXiv.org Machine Learning

Generative models of observations under interventions have been a vibrant topic of interest across machine learning and the sciences in recent years. For example, in drug discovery, there is a need to model the effects of diverse interventions on cells in order to characterize unknown biological mechanisms of action. We propose the Sparse Additive Mechanism Shift Variational Autoencoder, SAMS-VAE, to combine compositionality, disentanglement, and interpretability for perturbation models. SAMS-VAE models the latent state of a perturbed sample as the sum of a local latent variable capturing sample-specific variation and sparse global variables of latent intervention effects. Crucially, SAMS-VAE sparsifies these global latent variables for individual perturbations to identify disentangled, perturbation-specific latent subspaces that are flexibly composable. We evaluate SAMS-VAE both quantitatively and qualitatively on a range of tasks using two popular single cell sequencing datasets. In order to measure perturbation-specific model-properties, we also introduce a framework for evaluation of perturbation models based on average treatment effects with links to posterior predictive checks. SAMS-VAE outperforms comparable models in terms of generalization across in-distribution and out-of-distribution tasks, including a combinatorial reasoning task under resource paucity, and yields interpretable latent structures which correlate strongly to known biological mechanisms. Our results suggest SAMS-VAE is an interesting addition to the modeling toolkit for machine learning-driven scientific discovery.


Compositional Deep Probabilistic Models of DNA Encoded Libraries

arXiv.org Machine Learning

DNA-Encoded Library (DEL) has proven to be a powerful tool that utilizes combinatorially constructed small molecules to facilitate highly-efficient screening assays. These selection experiments, involving multiple stages of washing, elution, and identification of potent binders via unique DNA barcodes, often generate complex data. This complexity can potentially mask the underlying signals, necessitating the application of computational tools such as machine learning to uncover valuable insights. We introduce a compositional deep probabilistic model of DEL data, DEL-Compose, which decomposes molecular representations into their mono-synthon, di-synthon, and tri-synthon building blocks and capitalizes on the inherent hierarchical structure of these molecules by modeling latent reactions between embedded synthons. Additionally, we investigate methods to improve the observation models for DEL count data such as integrating covariate factors to more effectively account for data noise. Across two popular public benchmark datasets (CA-IX and HRP), our model demonstrates strong performance compared to count baselines, enriches the correct pharmacophores, and offers valuable insights via its intrinsic interpretable structure, thereby providing a robust tool for the analysis of DEL data.


Channel Vision Transformers: An Image Is Worth C x 16 x 16 Words

arXiv.org Artificial Intelligence

Vision Transformer (ViT) has emerged as a powerful architecture in the realm of modern computer vision. However, its application in certain imaging fields, such as microscopy and satellite imaging, presents unique challenges. In these domains, images often contain multiple channels, each carrying semantically distinct and independent information. Furthermore, the model must demonstrate robustness to sparsity in input channels, as they may not be densely available during training or testing. In this paper, we propose a modification to the ViT architecture that enhances reasoning across the input channels and introduce Hierarchical Channel Sampling (HCS) as an additional regularization technique to ensure robustness when only partial channels are presented during test time. Our proposed model, ChannelViT, constructs patch tokens independently from each input channel and utilizes a learnable channel embedding that is added to the patch tokens, similar to positional embeddings. We evaluate the performance of ChannelViT on ImageNet, JUMP-CP (microscopy cell imaging), and So2Sat (satellite imaging). Our results show that ChannelViT outperforms ViT on classification tasks and generalizes well, even when a subset of input channels is used during testing. Across our experiments, HCS proves to be a powerful regularizer, independent of the architecture employed, suggesting itself as a straightforward technique for robust ViT training. Lastly, we find that ChannelViT generalizes effectively even when there is limited access to all channels during training, highlighting its potential for multi-channel imaging under real-world conditions with sparse sensors. Vision Transformers (ViT) have emerged as a crucial architecture in contemporary computer vision, significantly enhancing image analysis. However, application to specific imaging domains, such as microscopy and satellite imaging, poses unique challenges. Images in these fields often comprise multiple channels, each carrying semantically distinct and independent information. The complexity is further compounded by the fact that these input channels may not always be densely available during training or testing, necessitating a model capable of handling such sparsity. In response to these challenges, we propose a modification to the ViT architecture that bolsters reasoning across the input channels. Our proposed model, ChannelViT, constructs patch tokens independently from each input channel and incorporates a learnable channel embedding that is added to the patch tokens, akin to positional embeddings. This simple modification enables the model to reason across both locations and channels.


Contextual Vision Transformers for Robust Representation Learning

arXiv.org Artificial Intelligence

We introduce Contextual Vision Transformers (ContextViT), a method designed to generate robust image representations for datasets experiencing shifts in latent factors across various groups. Derived from the concept of in-context learning, ContextViT incorporates an additional context token to encapsulate group-specific information. This integration allows the model to adjust the image representation in accordance with the group-specific context. Specifically, for a given input image, ContextViT maps images with identical group membership into this context token, which is appended to the input image tokens. Additionally, we introduce a context inference network to predict such tokens on-the-fly, given a batch of samples from the group. This enables ContextViT to adapt to new testing distributions during inference time. We demonstrate the efficacy of ContextViT across a wide range of applications. In supervised fine-tuning, we show that augmenting pre-trained ViTs with our proposed context conditioning mechanism results in consistent improvements in out-of-distribution generalization on iWildCam and FMoW. We also investigate self-supervised representation learning with ContextViT. Our experiments on the Camelyon17 pathology imaging benchmark and the JUMP-CP microscopy imaging benchmark demonstrate that ContextViT excels in learning stable image featurizations amidst distribution shift, consistently outperforming its ViT counterpart.


Black-box Coreset Variational Inference

arXiv.org Artificial Intelligence

Recent advances in coreset methods have shown that a selection of representative datapoints can replace massive volumes of data for Bayesian inference, preserving the relevant statistical information and significantly accelerating subsequent downstream tasks. Existing variational coreset constructions rely on either selecting subsets of the observed datapoints, or jointly performing approximate inference and optimizing pseudodata in the observed space akin to inducing points methods in Gaussian Processes. So far, both approaches are limited by complexities in evaluating their objectives for general purpose models, and require generating samples from a typically intractable posterior over the coreset throughout inference and testing. In this work, we present a black-box variational inference framework for coresets that overcomes these constraints and enables principled application of variational coresets to intractable models, such as Bayesian neural networks. We apply our techniques to supervised learning problems, and compare them with existing approaches in the literature for data summarization and inference.


DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries

arXiv.org Artificial Intelligence

DNA-Encoded Library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially-generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA-barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structured-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.


TyXe: Pyro-based Bayesian neural nets for Pytorch

arXiv.org Machine Learning

We introduce TyXe, a Bayesian neural network library built on top of Pytorch and Pyro. Our leading design principle is to cleanly separate architecture, prior, inference and likelihood specification, allowing for a flexible workflow where users can quickly iterate over combinations of these components. In contrast to existing packages TyXe does not implement any layer classes, and instead relies on architectures defined in generic Pytorch code. TyXe then provides modular choices for canonical priors, variational guides, inference techniques, and layer selections for a Bayesian treatment of the specified architecture. Sampling tricks for variance reduction, such as local reparameterization or flipout, are implemented as effect handlers, which can be applied independently of other specifications. We showcase the ease of use of TyXe to explore Bayesian versions of popular models from various libraries: toy regression with a pure Pytorch neural network; large-scale image classification with torchvision ResNets; graph neural networks based on DGL; and Neural Radiance Fields built on top of Pytorch3D. Finally, we provide convenient abstractions for variational continual learning. In all cases the change from a deterministic to a Bayesian neural network comes with minimal modifications to existing code, offering a broad range of researchers and practitioners alike practical access to uncertainty estimation techniques. The library is available at https://github.com/TyXe-BDL/TyXe.