Goto

Collaborating Authors

 Kapetanovic, Zerina


HyperCam: Low-Power Onboard Computer Vision for IoT Cameras

arXiv.org Artificial Intelligence

We present HyperCam, an energy-efficient image classification pipeline that enables computer vision tasks onboard low-power IoT camera systems. HyperCam leverages hyperdimensional computing to perform training and inference efficiently on low-power microcontrollers. We implement a low-power wireless camera platform using off-the-shelf hardware and demonstrate that HyperCam can achieve an accuracy of 93.60%, 84.06%, 92.98%, and 72.79% for MNIST, Fashion-MNIST, Face Detection, and Face Identification tasks, respectively, while significantly outperforming other classifiers in resource efficiency. Specifically, it delivers inference latency of 0.08-0.27s while using 42.91-63.00KB flash memory and 22.25KB RAM at peak. Among other machine learning classifiers such as SVM, xgBoost, MicroNets, MobileNetV3, and MCUNetV3, HyperCam is the only classifier that achieves competitive accuracy while maintaining competitive memory footprint and inference latency that meets the resource requirements of low-power camera systems.


Affordable Artificial Intelligence -- Augmenting Farmer Knowledge with AI

arXiv.org Artificial Intelligence

Farms produce hundreds of thousands of data points on the ground daily. Farming technique which combines farming practices with the insights uncovered in these data points using AI technology is called precision farming. Precision farming technology augments and extends farmers' deep knowledge about their land, making production more sustainable and profitable. As part of the larger effort at Microsoft for empowering agricultural labor force to be more productive and sustainable, this paper presents the AI technology for predicting micro-climate conditions on the farm. This article is a chapter in publication by Food and Agriculture Organization of the United Nations and International Telecommunication Union Bangkok, 2021. This publication on artificial intelligence (AI) for agriculture is the fifth in the E-agriculture in Action series, launched in 2016 and jointly produced by FAO and ITU. It aims to raise awareness about existing AI applications in agriculture and to inspire stakeholders to develop and replicate the new ones. Improvement of capacity and tools for capturing and processing data and substantial advances in the field of machine learning open new horizons for data-driven solutions that can support decision-making, facilitate supervision and monitoring, improve the timeliness and effectiveness of safety measures (e.g. use of pesticides), and support automation of many resource-consuming tasks in agriculture. This publication presents the reader with a collection of informative applications highlighting various ways AI is used in agriculture and offering valuable insights on the implementation process, success factors, and lessons learnt.