Kao, Ben
OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
Sun, Qiushi, Cheng, Kanzhi, Ding, Zichen, Jin, Chuanyang, Wang, Yian, Xu, Fangzhi, Wu, Zhenyu, Jia, Chengyou, Chen, Liheng, Liu, Zhoumianze, Kao, Ben, Li, Guohao, He, Junxian, Qiao, Yu, Wu, Zhiyong
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at \href{https://qiushisun.github.io/OS-Genesis-Home/}{OS-Genesis Homepage}.
OpenGraph: Towards Open Graph Foundation Models
Xia, Lianghao, Kao, Ben, Huang, Chao
Graph learning has become indispensable for interpreting and harnessing relational data in diverse fields, ranging from recommendation systems to social network analysis. In this context, a variety of GNNs have emerged as promising methodologies for encoding the structural information of graphs. By effectively capturing the graph's underlying structure, these GNNs have shown great potential in enhancing performance in graph learning tasks, such as link prediction and node classification. However, despite their successes, a significant challenge persists: these advanced methods often face difficulties in generalizing to unseen graph data that significantly differs from the training instances. In this work, our aim is to advance the graph learning paradigm by developing a general graph foundation model. This model is designed to understand the complex topological patterns present in diverse graph data, enabling it to excel in zero-shot graph learning tasks across different downstream datasets. To achieve this goal, we address several key technical challenges in our OpenGraph model. Firstly, we propose a unified graph tokenizer to adapt our graph model to generalize well on unseen graph data, even when the underlying graph properties differ significantly from those encountered during training. Secondly, we develop a scalable graph transformer as the foundational encoder, which effectively captures node-wise dependencies within the global topological context. Thirdly, we introduce a data augmentation mechanism enhanced by a LLM to alleviate the limitations of data scarcity in real-world scenarios. Extensive experiments validate the effectiveness of our framework. By adapting our OpenGraph to new graph characteristics and comprehending the nuances of diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings and domains.
Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual Context in Multimodal Machine Translation
Wu, Zhiyong, Kong, Lingpeng, Bi, Wei, Li, Xiang, Kao, Ben
A neural multimodal machine translation (MMT) system is one that aims to perform better translation by extending conventional text-only translation models with multimodal information. Many recent studies report improvements when equipping their models with the multimodal module, despite the controversy of whether such improvements indeed come from the multimodal part. We revisit the contribution of multimodal information in MMT by devising two interpretable MMT models. To our surprise, although our models replicate similar gains as recently developed multimodal-integrated systems achieved, our models learn to ignore the multimodal information. Upon further investigation, we discover that the improvements achieved by the multimodal models over text-only counterparts are in fact results of the regularization effect. We report empirical findings that highlight the importance of MMT models' interpretability, and discuss how our findings will benefit future research.
CAST: A Correlation-based Adaptive Spectral Clustering Algorithm on Multi-scale Data
Li, Xiang, Kao, Ben, Shan, Caihua, Yin, Dawei, Ester, Martin
We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities. Traditional spectral clustering techniques discover clusters by processing a similarity matrix that reflects the proximity of objects. For multi-scale data, distance-based similarity is not effective because objects of a sparse cluster could be far apart while those of a dense cluster have to be sufficiently close. Following [16], we solve the problem of spectral clustering on multi-scale data by integrating the concept of objects' "reachability similarity" with a given distance-based similarity to derive an objects' coefficient matrix. We propose the algorithm CAST that applies trace Lasso to regularize the coefficient matrix. We prove that the resulting coefficient matrix has the "grouping effect" and that it exhibits "sparsity". We show that these two characteristics imply very effective spectral clustering. We evaluate CAST and 10 other clustering methods on a wide range of datasets w.r.t. various measures. Experimental results show that CAST provides excellent performance and is highly robust across test cases of multi-scale data.