Goto

Collaborating Authors

 Kannan, Anitha


MEDCOD: A Medically-Accurate, Emotive, Diverse, and Controllable Dialog System

arXiv.org Artificial Intelligence

We present MEDCOD, a Medically-Accurate, Emotive, Diverse, and Controllable Dialog system with a unique approach to the natural language generator module. MEDCOD has been developed and evaluated specifically for the history taking task. It integrates the advantage of a traditional modular approach to incorporate (medical) domain knowledge with modern deep learning techniques to generate flexible, human-like natural language expressions. Two key aspects of MEDCOD's natural language output are described in detail. First, the generated sentences are emotive and empathetic, similar to how a doctor would communicate to the patient. Second, the generated sentence structures and phrasings are varied and diverse while maintaining medical consistency with the desired medical concept (provided by the dialogue manager module of MEDCOD). Experimental results demonstrate the effectiveness of our approach in creating a human-like medical dialogue system. Relevant code is available at https://github.com/curai/curai-research/tree/main/MEDCOD


Medically Aware GPT-3 as a Data Generator for Medical Dialogue Summarization

arXiv.org Artificial Intelligence

In medical dialogue summarization, summaries must be coherent and must capture all the medically relevant information in the dialogue. However, learning effective models for summarization require large amounts of labeled data which is especially hard to obtain. We present an algorithm to create synthetic training data with an explicit focus on capturing medically relevant information. We utilize GPT-3 as the backbone of our algorithm and scale 210 human labeled examples to yield results comparable to using 6400 human labeled examples ( 30x) leveraging low-shot learning and an ensemble method. In detailed experiments, we show that this approach produces high quality training data that can further be combined with human labeled data to get summaries that are strongly preferable to those produced by models trained on human data alone both in terms of medical accuracy and coherency.


Dr. Summarize: Global Summarization of Medical Dialogue by Exploiting Local Structures

arXiv.org Artificial Intelligence

Understanding a medical conversation between a patient and a physician poses a unique natural language understanding challenge since it combines elements of standard open ended conversation with very domain specific elements that require expertise and medical knowledge. Summarization of medical conversations is a particularly important aspect of medical conversation understanding since it addresses a very real need in medical practice: capturing the most important aspects of a medical encounter so that they can be used for medical decision making and subsequent follow ups. In this paper we present a novel approach to medical conversation summarization that leverages the unique and independent local structures created when gathering a patient's medical history. Our approach is a variation of the pointer generator network where we introduce a penalty on the generator distribution, and we explicitly model negations. The model also captures important properties of medical conversations such as medical knowledge coming from standardized medical ontologies better than when those concepts are introduced explicitly. Through evaluation by doctors, we show that our approach is preferred on twice the number of summaries to the baseline pointer generator model and captures most or all of the information in 80% of the conversations making it a realistic alternative to costly manual summarization by medical experts.


COVID-19 in differential diagnosis of online symptom assessments

arXiv.org Artificial Intelligence

The COVID-19 pandemic has magnified an already existing trend of people looking for healthcare solutions online. One class of solutions are symptom checkers, which have become very popular in the context of COVID-19. Traditional symptom checkers, however, are based on manually curated expert systems that are inflexible and hard to modify, especially in a quickly changing situation like the one we are facing today. That is why all COVID-19 existing solutions are manual symptom checkers that can only estimate the probability of this disease and cannot contemplate alternative hypothesis or come up with a differential diagnosis. While machine learning offers an alternative, the lack of reliable data does not make it easy to apply to COVID-19 either. In this paper we present an approach that combines the strengths of traditional AI expert systems and novel deep learning models. In doing so we can leverage prior knowledge as well as any amount of existing data to quickly derive models that best adapt to the current state of the world and latest scientific knowledge. We use the approach to train a COVID-19 aware differential diagnosis model that can be used for medical decision support both for doctors or patients. We show that our approach is able to accurately model new incoming data about COVID-19 while still preserving accuracy on conditions that had been modeled in the past. While our approach shows evident and clear advantages for an extreme situation like the one we are currently facing, we also show that its flexibility generalizes beyond this concrete, but very important, example.


Domain-Relevant Embeddings for Medical Question Similarity

arXiv.org Machine Learning

The rate at which medical questions are asked online significantly exceeds the capacity of qualified people to answer them, leaving many questions unanswered or inadequately answered. Many of these questions are not unique, and reliable identification of similar questions would enable more efficient and effective question answering schema. While many research efforts have focused on the problem of general question similarity, these approaches do not generalize well to the medical domain, where medical expertise is often required to determine semantic similarity. In this paper, we show how a semi-supervised approach of pre-training a neural network on medical question-answer pairs is a particularly useful intermediate task for the ultimate goal of determining medical question similarity. While other pre-training tasks yield an accuracy below 78.7% on this task, our model achieves an accuracy of 82.6% with the same number of training examples, an accuracy of 80.0% with a much smaller training set, and an accuracy of 84.5% when the full corpus of medical question-answer data is used. However, the number of people asking medical questions online far exceeds the number of qualified experts - i.e doctors - answering them. One way to address this imbalance is to build a system that can automatically match unanswered questions with semantically similar answered questions, or mark them as priority if no similar answered questions exist. This approach uses doctor time more efficiently, reducing the number of unanswered questions and lowering the cost of providing online care.


Open Set Medical Diagnosis

arXiv.org Artificial Intelligence

Machine-learned diagnosis models have shown promise as medical aides but are trained under a closed-set assumption, i.e. that models will only encounter conditions on which they have been trained. However, it is practically infeasible to obtain sufficient training data for every human condition, and once deployed such models will invariably face previously unseen conditions. We frame machine-learned diagnosis as an open-set learning problem, and study how state-of-the-art approaches compare. Further, we extend our study to a setting where training data is distributed across several healthcare sites that do not allow data pooling, and experiment with different strategies of building open-set diagnostic ensembles. Across both settings, we observe consistent gains from explicitly modeling unseen conditions, but find the optimal training strategy to vary across settings.


Prototypical Clustering Networks for Dermatological Disease Diagnosis

arXiv.org Artificial Intelligence

We consider the problem of image classification for the purpose of aiding doctors in dermatological diagnosis. Dermatological diagnosis poses two major challenges for standard off-the-shelf techniques: First, the data distribution is typically extremely long tailed. Second, intra-class variability is often large. To address the first issue, we formulate the problem as low-shot learning, where once deployed, a base classifier must rapidly generalize to diagnose novel conditions given very few labeled examples. To model diverse classes effectively, we propose Prototypical Clustering Networks (PCN), an extension to Prototypical Networks that learns a mixture of prototypes for each class. Prototypes are initialized for each class via clustering and refined via an online update scheme. Classification is performed by measuring similarity to a weighted combination of prototypes within a class, where the weights are the inferred cluster responsibilities. We demonstrate the strengths of our approach in effective diagnosis on a realistic dataset of dermatological conditions.


Learn from Your Neighbor: Learning Multi-modal Mappings from Sparse Annotations

arXiv.org Machine Learning

Many structured prediction problems (particularly in vision and language domains) are ambiguous, with multiple outputs being correct for an input - e.g. there are many ways of describing an image, multiple ways of translating a sentence; however, exhaustively annotating the applicability of all possible outputs is intractable due to exponentially large output spaces (e.g. all English sentences). In practice, these problems are cast as multi-class prediction, with the likelihood of only a sparse set of annotations being maximized - unfortunately penalizing for placing beliefs on plausible but unannotated outputs. We make and test the following hypothesis - for a given input, the annotations of its neighbors may serve as an additional supervisory signal. Specifically, we propose an objective that transfers supervision from neighboring examples. We first study the properties of our developed method in a controlled toy setup before reporting results on multi-label classification and two image-grounded sequence modeling tasks - captioning and question generation. We evaluate using standard task-specific metrics and measures of output diversity, finding consistent improvements over standard maximum likelihood training and other baselines.


Learning from the experts: From expert systems to machine learned diagnosis models

arXiv.org Artificial Intelligence

Expert diagnostic support systems have been extensively studied. The practical application of these systems in real-world scenarios have been somewhat limited due to well-understood shortcomings such as extensibility. More recently, machine learned models for medical diagnosis have gained momentum since they can learn and generalize patterns found in very large datasets like electronic health records. These models also have shortcomings. In particular, there is no easy way to incorporate prior knowledge from existing literature or experts. In this paper, we present a method to merge both approaches by using expert systems as generative models that create simulated data on which models can be learned. We demonstrate that such a learned model not only preserve the original properties of the expert systems but also addresses some of their limitations. Furthermore, we show how this approach can also be used as the starting point to combine expert knowledge with knowledge extracted from other data sources such as electronic health records.


Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model

Neural Information Processing Systems

We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. Across a variety of domains, a recurring problem with MLE trained generative neural dialog models (G) is that they tend to produce'safe' and generic responses ('I don't know', 'I can't tell'). In contrast, discriminative dialog models (D) that are trained to rank a list of candidate human responses outperform their generative counterparts; in terms of automatic metrics, diversity, and informativeness of the responses. However, D is not useful in practice since it can not be deployed to have real conversations with users. Our work aims to achieve the best of both worlds - the practical usefulness of G and the strong performance of D - via knowledge transfer from D to G. Our primary contribution is an end-to-end trainable generative visual dialog model, where G receives gradients from D as a perceptual (not adversarial) loss of the sequence sampledfrom G. We leverage the recently proposed Gumbel-Softmax (GS) approximation to the discrete distribution - specifically, a RNN augmented with a sequence of GS samplers, coupled with the straight-through gradient estimator to enable end-to-end differentiability. We also introduce a stronger encoder for visual dialog, and employ a self-attention mechanism for answer encoding along with a metric learning loss to aid D in better capturing semantic similarities in answer responses. Overall, our proposed model outperforms state-of-the-art on the VisDial dataset by a significant margin (2.67% on recall@10).