Goto

Collaborating Authors

 Kanhabua, Nattiya


Multiple Models for Recommending Temporal Aspects of Entities

arXiv.org Artificial Intelligence

Entity aspect recommendation is an emerging task in semantic search that helps users discover serendipitous and prominent information with respect to an entity, of which salience (e.g., popularity) is the most important factor in previous work. However, entity aspects are temporally dynamic and often driven by events happening over time. For such cases, aspect suggestion based solely on salience features can give unsatisfactory results, for two reasons. First, salience is often accumulated over a long time period and does not account for recency. Second, many aspects related to an event entity are strongly time-dependent. In this paper, we study the task of temporal aspect recommendation for a given entity, which aims at recommending the most relevant aspects and takes into account time in order to improve search experience. We propose a novel event-centric ensemble ranking method that learns from multiple time and type-dependent models and dynamically trades off salience and recency characteristics. Through extensive experiments on real-world query logs, we demonstrate that our method is robust and achieves better effectiveness than competitive baselines.


Why is it Difficult to Detect Sudden and Unexpected Epidemic Outbreaks in Twitter?

arXiv.org Machine Learning

Social media services such as Twitter are a valuable source of information for decision support systems. Many studies have shown that this also holds for the medical domain, where Twitter is considered a viable tool for public health officials to sift through relevant information for the early detection, management, and control of epidemic outbreaks. This is possible due to the inherent capability of social media services to transmit information faster than traditional channels. However, the majority of current studies have limited their scope to the detection of common and seasonal health recurring events (e.g., Influenza-like Illness), partially due to the noisy nature of Twitter data, which makes outbreak detection and management very challenging. Within the European project M-Eco, we developed a Twitter-based Epidemic Intelligence (EI) system, which is designed to also handle a more general class of unexpected and aperiodic outbreaks. In particular, we faced three main research challenges in this endeavor: 1) dynamic classification to manage terminology evolution of Twitter messages, 2) alert generation to produce reliable outbreak alerts analyzing the (noisy) tweet time series, and 3) ranking and recommendation to support domain experts for better assessment of the generated alerts. In this paper, we empirically evaluate our proposed approach to these challenges using real-world outbreak datasets and a large collection of tweets. We validate our solution with domain experts, describe our experiences, and give a more realistic view on the benefits and issues of analyzing social media for public health.