Kang, Yipeng
Causal Graph Guided Steering of LLM Values via Prompts and Sparse Autoencoders
Kang, Yipeng, Wang, Junqi, Li, Yexin, Zhong, Fangwei, Feng, Xue, Wang, Mengmeng, Tu, Wenming, Wang, Quansen, Li, Hengli, Zheng, Zilong
As large language models (LLMs) become increasingly integrated into critical applications, aligning their behavior with human values presents significant challenges. Current methods, such as Reinforcement Learning from Human Feedback (RLHF), often focus on a limited set of values and can be resource-intensive. Furthermore, the correlation between values has been largely overlooked and remains underutilized. Our framework addresses this limitation by mining a causal graph that elucidates the implicit relationships among various values within the LLMs. Leveraging the causal graph, we implement two lightweight mechanisms for value steering: prompt template steering and Sparse Autoencoder feature steering, and analyze the effects of altering one value dimension on others. Extensive experiments conducted on Gemma-2B-IT and Llama3-8B-IT demonstrate the effectiveness and controllability of our steering methods.
IBGP: Imperfect Byzantine Generals Problem for Zero-Shot Robustness in Communicative Multi-Agent Systems
Mao, Yihuan, Kang, Yipeng, Li, Peilun, Zhang, Ning, Xu, Wei, Zhang, Chongjie
As large language model (LLM) agents increasingly integrate into our infrastructure, their robust coordination and message synchronization become vital. The Byzantine Generals Problem (BGP) is a critical model for constructing resilient multi-agent systems (MAS) under adversarial attacks. It describes a scenario where malicious agents with unknown identities exist in the system-situations that, in our context, could result from LLM agents' hallucinations or external attacks. In BGP, the objective of the entire system is to reach a consensus on the action to be taken. Traditional BGP requires global consensus among all agents; however, in practical scenarios, global consensus is not always necessary and can even be inefficient. Therefore, there is a pressing need to explore a refined version of BGP that aligns with the local coordination patterns observed in MAS. We refer to this refined version as Imperfect BGP (IBGP) in our research, aiming to address this discrepancy. To tackle this issue, we propose a framework that leverages consensus protocols within general MAS settings, providing provable resilience against communication attacks and adaptability to changing environments, as validated by empirical results. Additionally, we present a case study in a sensor network environment to illustrate the practical application of our protocol.
Incorporating Pragmatic Reasoning Communication into Emergent Language
Kang, Yipeng, Wang, Tonghan, de Melo, Gerard
Emergentism and pragmatics are two research fields that study the dynamics of linguistic communication along substantially different timescales and intelligence levels. From the perspective of multi-agent reinforcement learning, they correspond to stochastic games with reinforcement training and stage games with opponent awareness. Given that their combination has been explored in linguistics, we propose computational models that combine short-term mutual reasoning-based pragmatics with long-term language emergentism. We explore this for agent communication referential games as well as in Starcraft II, assessing the relative merits of different kinds of mutual reasoning pragmatics models both empirically and theoretically. Our results shed light on their importance for making inroads towards getting more natural, accurate, robust, fine-grained, and succinct utterances.