Kang, Shiyin
Disambiguation of Chinese Polyphones in an End-to-End Framework with Semantic Features Extracted by Pre-trained BERT
Dai, Dongyang, Wu, Zhiyong, Kang, Shiyin, Wu, Xixin, Jia, Jia, Su, Dan, Yu, Dong, Meng, Helen
Grapheme-to-phoneme (G2P) conversion serves as an essential component in Chinese Mandarin text-to-speech (TTS) system, where polyphone disambiguation is the core issue. In this paper, we propose an end-to-end framework to predict the pronunciation of a polyphonic character, which accepts sentence containing polyphonic character as input in the form of Chinese character sequence without the necessity of any preprocessing. The proposed method consists of a pre-trained bidirectional encoder representations from Transformers (BERT) model and a neural network (NN) based classifier. The pre-trained BERT model extracts semantic features from a raw Chinese character sequence and the NN based classifier predicts the polyphonic character's pronunciation according to BERT output. In out experiments, we implemented three classifiers, a fully-connected network based classifier, a long short-term memory (LSTM) network based classifier and a Transformer block based classifier. The experimental results compared with the baseline approach based on LSTM demonstrate that, the pre-trained model extracts effective semantic features, which greatly enhances the performance of polyphone disambiguation. In addition, we also explored the impact of contextual information on polyphone disambiguation.
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Yuan, Ruibin, Lin, Hanfeng, Wang, Yi, Tian, Zeyue, Wu, Shangda, Shen, Tianhao, Zhang, Ge, Wu, Yuhang, Liu, Cong, Zhou, Ziya, Ma, Ziyang, Xue, Liumeng, Wang, Ziyu, Liu, Qin, Zheng, Tianyu, Li, Yizhi, Ma, Yinghao, Liang, Yiming, Chi, Xiaowei, Liu, Ruibo, Wang, Zili, Li, Pengfei, Wu, Jingcheng, Lin, Chenghua, Liu, Qifeng, Jiang, Tao, Huang, Wenhao, Chen, Wenhu, Benetos, Emmanouil, Fu, Jie, Xia, Gus, Dannenberg, Roger, Xue, Wei, Kang, Shiyin, Guo, Yike
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation, we find that their ability has yet to be generalized to music, humanity's creative language. We introduce ChatMusician, an open-source LLM that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. We release our 4B token music-language corpora MusicPile, the collected MusicTheoryBench, code, model and demo in GitHub.
Multi-view MidiVAE: Fusing Track- and Bar-view Representations for Long Multi-track Symbolic Music Generation
Lin, Zhiwei, Chen, Jun, Tang, Boshi, Sha, Binzhu, Yang, Jing, Ju, Yaolong, Fan, Fan, Kang, Shiyin, Wu, Zhiyong, Meng, Helen
Variational Autoencoders (VAEs) constitute a crucial component of neural symbolic music generation, among which some works have yielded outstanding results and attracted considerable attention. Nevertheless, previous VAEs still encounter issues with overly long feature sequences and generated results lack contextual coherence, thus the challenge of modeling long multi-track symbolic music still remains unaddressed. To this end, we propose Multi-view MidiVAE, as one of the pioneers in VAE methods that effectively model and generate long multi-track symbolic music. The Multi-view MidiVAE utilizes the two-dimensional (2-D) representation, OctupleMIDI, to capture relationships among notes while reducing the feature sequences length. Moreover, we focus on instrumental characteristics and harmony as well as global and local information about the musical composition by employing a hybrid variational encoding-decoding strategy to integrate both Track- and Bar-view MidiVAE features. Objective and subjective experimental results on the CocoChorales dataset demonstrate that, compared to the baseline, Multi-view MidiVAE exhibits significant improvements in terms of modeling long multi-track symbolic music.
Improving Mandarin Prosodic Structure Prediction with Multi-level Contextual Information
Chen, Jie, Song, Changhe, Tuo, Deyi, Wu, Xixin, Kang, Shiyin, Wu, Zhiyong, Meng, Helen
For text-to-speech (TTS) synthesis, prosodic structure prediction (PSP) plays an important role in producing natural and intelligible speech. Although inter-utterance linguistic information can influence the speech interpretation of the target utterance, previous works on PSP mainly focus on utilizing intrautterance linguistic information of the current utterance only. This work proposes to use inter-utterance linguistic information to improve the performance of PSP. Multi-level contextual information, which includes both inter-utterance and intrautterance linguistic information, is extracted by a hierarchical encoder from character level, utterance level and discourse level of the input text. Then a multi-task learning (MTL) decoder predicts prosodic boundaries from multi-level contextual information. Objective evaluation results on two datasets show that our method achieves better F1 scores in predicting prosodic word (PW), prosodic phrase (PPH) and intonational phrase (IPH). It demonstrates the effectiveness of using multi-level contextual information for PSP. Subjective preference tests also indicate the naturalness of synthesized speeches are improved.
Towards Spontaneous Style Modeling with Semi-supervised Pre-training for Conversational Text-to-Speech Synthesis
Li, Weiqin, Lei, Shun, Huang, Qiaochu, Zhou, Yixuan, Wu, Zhiyong, Kang, Shiyin, Meng, Helen
The spontaneous behavior that often occurs in conversations makes speech more human-like compared to reading-style. However, synthesizing spontaneous-style speech is challenging due to the lack of high-quality spontaneous datasets and the high cost of labeling spontaneous behavior. In this paper, we propose a semi-supervised pre-training method to increase the amount of spontaneous-style speech and spontaneous behavioral labels. In the process of semi-supervised learning, both text and speech information are considered for detecting spontaneous behaviors labels in speech. Moreover, a linguistic-aware encoder is used to model the relationship between each sentence in the conversation. Experimental results indicate that our proposed method achieves superior expressive speech synthesis performance with the ability to model spontaneous behavior in spontaneous-style speech and predict reasonable spontaneous behavior from text.
Towards Improving the Expressiveness of Singing Voice Synthesis with BERT Derived Semantic Information
Zhou, Shaohuan, Lei, Shun, You, Weiya, Tuo, Deyi, You, Yuren, Wu, Zhiyong, Kang, Shiyin, Meng, Helen
This paper presents an end-to-end high-quality singing voice synthesis (SVS) system that uses bidirectional encoder representation from Transformers (BERT) derived semantic embeddings to improve the expressiveness of the synthesized singing voice. Based on the main architecture of recently proposed VISinger, we put forward several specific designs for expressive singing voice synthesis. First, different from the previous SVS models, we use text representation of lyrics extracted from pre-trained BERT as additional input to the model. The representation contains information about semantics of the lyrics, which could help SVS system produce more expressive and natural voice. Second, we further introduce an energy predictor to stabilize the synthesized voice and model the wider range of energy variations that also contribute to the expressiveness of singing voice. Last but not the least, to attenuate the off-key issues, the pitch predictor is re-designed to predict the real to note pitch ratio. Both objective and subjective experimental results indicate that the proposed SVS system can produce singing voice with higher-quality outperforming VISinger.
CB-Conformer: Contextual biasing Conformer for biased word recognition
Xu, Yaoxun, Liu, Baiji, and, Qiaochu Huang, Song, Xingchen, Wu, Zhiyong, Kang, Shiyin, Meng, Helen
Due to the mismatch between the source and target domains, how to better utilize the biased word information to improve the performance of the automatic speech recognition model in the target domain becomes a hot research topic. Previous approaches either decode with a fixed external language model or introduce a sizeable biasing module, which leads to poor adaptability and slow inference. In this work, we propose CB-Conformer to improve biased word recognition by introducing the Contextual Biasing Module and the Self-Adaptive Language Model to vanilla Conformer. The Contextual Biasing Module combines audio fragments and contextual information, with only 0.2% model parameters of the original Conformer. The Self-Adaptive Language Model modifies the internal weights of biased words based on their recall and precision, resulting in a greater focus on biased words and more successful integration with the automatic speech recognition model than the standard fixed language model. In addition, we construct and release an open-source Mandarin biased-word dataset based on WenetSpeech. Experiments indicate that our proposed method brings a 15.34% character error rate reduction, a 14.13% biased word recall increase, and a 6.80% biased word F1-score increase compared with the base Conformer.