Goto

Collaborating Authors

 Kang, SeongKu


Improving Scientific Document Retrieval with Concept Coverage-based Query Set Generation

arXiv.org Artificial Intelligence

In specialized fields like the scientific domain, constructing large-scale human-annotated datasets poses a significant challenge due to the need for domain expertise. Recent methods have employed large language models to generate synthetic queries, which serve as proxies for actual user queries. However, they lack control over the content generated, often resulting in incomplete coverage of academic concepts in documents. We introduce Concept Coverage-based Query set Generation (CCQGen) framework, designed to generate a set of queries with comprehensive coverage of the document's concepts. A key distinction of CCQGen is that it adaptively adjusts the generation process based on the previously generated queries. We identify concepts not sufficiently covered by previous queries, and leverage them as conditions for subsequent query generation. This approach guides each new query to complement the previous ones, aiding in a thorough understanding of the document. Extensive experiments demonstrate that CCQGen significantly enhances query quality and retrieval performance.


Uncertainty Quantification and Decomposition for LLM-based Recommendation

arXiv.org Artificial Intelligence

Instruction-tuned for recommendation, we demonstrate that LLMs often exhibit uncertainty LLMs [4, 29, 64, 66] have shown remarkable performance for the in their recommendations. To ensure the trustworthy zero-shot ranking task [23, 25], and can be further fine-tuned with use of LLMs in generating recommendations, we emphasize the the user history logged on the system [2, 19, 81]. Recent methods importance of assessing the reliability of recommendations generated [10, 70, 79, 80] adopt the retrieval-augmented generation paradigm by LLMs. We start by introducing a novel framework for [3, 27], where LLMs are employed to generate ranking lists with candidates estimating the predictive uncertainty to quantitatively measure the retrieved by candidate generators. This approach exhibits reliability of LLM-based recommendations. We further propose to state-of-the-art recommendation performance over conventional decompose the predictive uncertainty into recommendation uncertainty sequential recommenders [31, 63], facilitating better online updates and prompt uncertainty, enabling in-depth analyses of and avoiding hallucination. the primary source of uncertainty. Through extensive experiments, While LLMs have been widely employed in real-world applications we (1) demonstrate predictive uncertainty effectively indicates the that can influence human behavior, there is a lack of exploration reliability of LLM-based recommendations, (2) investigate the origins in assessing the reliability of the LLM-based recommendation. of uncertainty with decomposed uncertainty measures, and Indeed, despite their superior performance, we demonstrate recommendations (3) propose uncertainty-aware prompting for a lower predictive generated by LLMs are highly volatile depending on uncertainty and enhanced recommendation. Our source code and the prompting details (e.g., word choice, number of user histories, model weights are available at https://github.com/WonbinKweon/


Taxonomy-guided Semantic Indexing for Academic Paper Search

arXiv.org Artificial Intelligence

Academic paper search is an essential task for efficient literature discovery and scientific advancement. While dense retrieval has advanced various ad-hoc searches, it often struggles to match the underlying academic concepts between queries and documents, which is critical for paper search. To enable effective academic concept matching for paper search, we propose Taxonomy-guided Semantic Indexing (TaxoIndex) framework. TaxoIndex extracts key concepts from papers and organizes them as a semantic index guided by an academic taxonomy, and then leverages this index as foundational knowledge to identify academic concepts and link queries and documents. As a plug-and-play framework, TaxoIndex can be flexibly employed to enhance existing dense retrievers. Extensive experiments show that TaxoIndex brings significant improvements, even with highly limited training data, and greatly enhances interpretability.


Self-Consistent Reasoning-based Aspect-Sentiment Quad Prediction with Extract-Then-Assign Strategy

arXiv.org Artificial Intelligence

In the task of aspect sentiment quad prediction (ASQP), generative methods for predicting sentiment quads have shown promising results. However, they still suffer from imprecise predictions and limited interpretability, caused by data scarcity and inadequate modeling of the quadruplet composition process. In this paper, we propose Self-Consistent Reasoning-based Aspect-sentiment quadruple Prediction (SCRAP), optimizing its model to generate reasonings and the corresponding sentiment quadruplets in sequence. SCRAP adopts the Extract-Then-Assign reasoning strategy, which closely mimics human cognition. In the end, SCRAP significantly improves the model's ability to handle complex reasoning tasks and correctly predict quadruplets through consistency voting, resulting in enhanced interpretability and accuracy in ASQP.


Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset

arXiv.org Artificial Intelligence

Conversational recommender system is an emerging area that has garnered an increasing interest in the community, especially with the advancements in large language models (LLMs) that enable diverse reasoning over conversational input. Despite the progress, the field has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that utterances in PEARL include more specific user preferences, show expertise in the target domain, and provide recommendations more relevant to the dialogue context than those in prior datasets.


Learning Discriminative Dynamics with Label Corruption for Noisy Label Detection

arXiv.org Machine Learning

Label noise, commonly found in real-world datasets, has a detrimental impact on a model's generalization. To effectively detect incorrectly labeled instances, previous works have mostly relied on distinguishable training signals, such as training loss, as indicators to differentiate between clean and noisy labels. However, they have limitations in that the training signals incompletely reveal the model's behavior and are not effectively generalized to various noise types, resulting in limited detection accuracy. In this paper, we propose DynaCor framework that distinguishes incorrectly labeled instances from correctly labeled ones based on the dynamics of the training signals. To cope with the absence of supervision for clean and noisy labels, DynaCor first introduces a label corruption strategy that augments the original dataset with intentionally corrupted labels, enabling indirect simulation of the model's behavior on noisy labels. Then, DynaCor learns to identify clean and noisy instances by inducing two clearly distinguishable clusters from the latent representations of training dynamics. Our comprehensive experiments show that DynaCor outperforms the state-of-the-art competitors and shows strong robustness to various noise types and noise rates.


Improving Matrix Completion by Exploiting Rating Ordinality in Graph Neural Networks

arXiv.org Artificial Intelligence

Matrix completion is an important area of research in recommender systems. Recent methods view a rating matrix as a user-item bi-partite graph with labeled edges denoting observed ratings and predict the edges between the user and item nodes by using the graph neural network (GNN). Despite their effectiveness, they treat each rating type as an independent relation type and thus cannot sufficiently consider the ordinal nature of the ratings. In this paper, we explore a new approach to exploit rating ordinality for GNN, which has not been studied well in the literature. We introduce a new method, called ROGMC, to leverage Rating Ordinality in GNN-based Matrix Completion. It uses cumulative preference propagation to directly incorporate rating ordinality in GNN's message passing, allowing for users' stronger preferences to be more emphasized based on inherent orders of rating types. This process is complemented by interest regularization which facilitates preference learning using the underlying interest information. Our extensive experiments show that ROGMC consistently outperforms the existing strategies of using rating types for GNN. We expect that our attempt to explore the feasibility of utilizing rating ordinality for GNN may stimulate further research in this direction.


Improving Retrieval in Theme-specific Applications using a Corpus Topical Taxonomy

arXiv.org Artificial Intelligence

Document retrieval has greatly benefited from the advancements of large-scale pre-trained language models (PLMs). However, their effectiveness is often limited in theme-specific applications for specialized areas or industries, due to unique terminologies, incomplete contexts of user queries, and specialized search intents. To capture the theme-specific information and improve retrieval, we propose to use a corpus topical taxonomy, which outlines the latent topic structure of the corpus while reflecting user-interested aspects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval) framework, which identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts. As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers. Through extensive quantitative, ablative, and exploratory experiments on two real-world datasets, we ascertain the benefits of using topical taxonomy for retrieval in theme-specific applications and demonstrate the effectiveness of ToTER.


MvFS: Multi-view Feature Selection for Recommender System

arXiv.org Artificial Intelligence

Feature selection, which is a technique to select key features in recommender systems, has received increasing research attention. Recently, Adaptive Feature Selection (AdaFS) has shown remarkable performance by adaptively selecting features for each data instance, considering that the importance of a given feature field can vary significantly across data. However, this method still has limitations in that its selection process could be easily biased to major features that frequently occur. To address these problems, we propose Multi-view Feature Selection (MvFS), which selects informative features for each instance more effectively. Most importantly, MvFS employs a multi-view network consisting of multiple sub-networks, each of which learns to measure the feature importance of a part of data with different feature patterns. By doing so, MvFS mitigates the bias problem towards dominant patterns and promotes a more balanced feature selection process. Moreover, MvFS adopts an effective importance score modeling strategy which is applied independently to each field without incurring dependency among features. Experimental results on real-world datasets demonstrate the effectiveness of MvFS compared to state-of-the-art baselines.


Learning Topology-Specific Experts for Molecular Property Prediction

arXiv.org Artificial Intelligence

Recently, graph neural networks (GNNs) have been successfully applied to predicting molecular properties, which is one of the most classical cheminformatics tasks with various applications. Despite their effectiveness, we empirically observe that training a single GNN model for diverse molecules with distinct structural patterns limits its prediction performance. In this paper, motivated by this observation, we propose TopExpert to leverage topology-specific prediction models (referred to as experts), each of which is responsible for each molecular group sharing similar topological semantics. That is, each expert learns topology-specific discriminative features while being trained with its corresponding topological group. To tackle the key challenge of grouping molecules by their topological patterns, we introduce a clustering-based gating module that assigns an input molecule into one of the clusters and further optimizes the gating module with two different types of self-supervision: topological semantics induced by GNNs and molecular scaffolds, respectively. Extensive experiments demonstrate that TopExpert has boosted the performance for molecular property prediction and also achieved better generalization for new molecules with unseen scaffolds than baselines. The code is available at https://github.com/kimsu55/ToxExpert.