Kang, Mintong
MMDT: Decoding the Trustworthiness and Safety of Multimodal Foundation Models
Xu, Chejian, Zhang, Jiawei, Chen, Zhaorun, Xie, Chulin, Kang, Mintong, Potter, Yujin, Wang, Zhun, Yuan, Zhuowen, Xiong, Alexander, Xiong, Zidi, Zhang, Chenhui, Yuan, Lingzhi, Zeng, Yi, Xu, Peiyang, Guo, Chengquan, Zhou, Andy, Tan, Jeffrey Ziwei, Zhao, Xuandong, Pinto, Francesco, Xiang, Zhen, Gai, Yu, Lin, Zinan, Hendrycks, Dan, Li, Bo, Song, Dawn
Multimodal foundation models (MMFMs) play a crucial role in various applications, including autonomous driving, healthcare, and virtual assistants. However, several studies have revealed vulnerabilities in these models, such as generating unsafe content by text-to-image models. Existing benchmarks on multimodal models either predominantly assess the helpfulness of these models, or only focus on limited perspectives such as fairness and privacy. In this paper, we present the first unified platform, MMDT (Multimodal DecodingTrust), designed to provide a comprehensive safety and trustworthiness evaluation for MMFMs. Our platform assesses models from multiple perspectives, including safety, hallucination, fairness/bias, privacy, adversarial robustness, and out-of-distribution (OOD) generalization. We have designed various evaluation scenarios and red teaming algorithms under different tasks for each perspective to generate challenging data, forming a high-quality benchmark. We evaluate a range of multimodal models using MMDT, and our findings reveal a series of vulnerabilities and areas for improvement across these perspectives. This work introduces the first comprehensive and unique safety and trustworthiness evaluation platform for MMFMs, paving the way for developing safer and more reliable MMFMs and systems. Our platform and benchmark are available at https://mmdecodingtrust.github.io/.
FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance
Kang, Mintong, Kumar, Vinayshekhar Bannihatti, Roy, Shamik, Kumar, Abhishek, Khosla, Sopan, Narayanaswamy, Balakrishnan Murali, Gangadharaiah, Rashmi
Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Further, given the limitations of existing datasets in comprehensively assessing bias in diffusion models, we introduce a holistic bias evaluation benchmark HBE, covering diverse domains and incorporating complex prompts across various applications. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly and precisely control generation distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.
AdvWave: Stealthy Adversarial Jailbreak Attack against Large Audio-Language Models
Kang, Mintong, Xu, Chejian, Li, Bo
Recent advancements in large audio-language models (LALMs) have enabled speech-based user interactions, significantly enhancing user experience and accelerating the deployment of LALMs in real-world applications. However, ensuring the safety of LALMs is crucial to prevent risky outputs that may raise societal concerns or violate AI regulations. Despite the importance of this issue, research on jailbreaking LALMs remains limited due to their recent emergence and the additional technical challenges they present compared to attacks on DNNbased audio models. Specifically, the audio encoders in LALMs, which involve discretization operations, often lead to gradient shattering, hindering the effectiveness of attacks relying on gradient-based optimizations. The behavioral variability of LALMs further complicates the identification of effective (adversarial) optimization targets. Moreover, enforcing stealthiness constraints on adversarial audio waveforms introduces a reduced, non-convex feasible solution space, further intensifying the challenges of the optimization process. To overcome these challenges, we develop AdvWave, the first jailbreak framework against LALMs. We propose a dual-phase optimization method that addresses gradient shattering, enabling effective end-to-end gradient-based optimization. Additionally, we develop an adaptive adversarial target search algorithm that dynamically adjusts the adversarial optimization target based on the response patterns of LALMs for specific queries. To ensure that adversarial audio remains perceptually natural to human listeners, we design a classifier-guided optimization approach that generates adversarial noise resembling common urban sounds. Furthermore, we employ an iterative adversarial audio refinement technique to achieve near-perfect jailbreak success rates on black-box LALMs, requiring fewer than 30 queries per instance.
AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents
Xu, Chejian, Kang, Mintong, Zhang, Jiawei, Liao, Zeyi, Mo, Lingbo, Yuan, Mengqi, Sun, Huan, Li, Bo
Vision Language Models (VLMs) have revolutionized the creation of generalist web agents, empowering them to autonomously complete diverse tasks on real-world websites, thereby boosting human efficiency and productivity. However, despite their remarkable capabilities, the safety and security of these agents against malicious attacks remain critically underexplored, raising significant concerns about their safe deployment. To uncover and exploit such vulnerabilities in web agents, we provide AdvWeb, a novel black-box attack framework designed against web agents. AdvWeb trains an adversarial prompter model that generates and injects adversarial prompts into web pages, misleading web agents into executing targeted adversarial actions such as inappropriate stock purchases or incorrect bank transactions--actions that could lead to severe real-world consequences. With only black-box access to the web agent, we train and optimize the adversarial prompter model using Direct Policy Optimization (DPO), leveraging both successful and failed attack strings against the target agent. Unlike prior approaches, our adversarial string injection maintains stealth and control: (1) the appearance of the website remains unchanged before and after the attack, making it nearly impossible for users to detect tampering, and (2) attackers can modify specific substrings within the generated adversarial string to seamlessly change the attack objective (e.g., purchasing stocks from a different company), greatly enhancing attack flexibility and efficiency. We conduct extensive evaluations, demonstrating that AdvWeb achieves high success rates in attacking state-of-the-art GPT-4Vbased VLM agents across various web tasks in black-box settings. Our findings expose critical vulnerabilities in current LLM/VLM-based agents, emphasizing the urgent need for developing more reliable web agents and implementing effective defenses against such adversarial threats. Our code and data are available at https://ai-secure.github.io/AdvWeb/. The rapid evolution of Large Language Models (LLMs) and Vision Language Models (VLMs) has facilitated the development of generalist web agents, which are capable of autonomously interacting with real-world websites and performing tasks (Zhou et al., 2023; Deng et al., 2024; Zheng et al., 2024).
$R^2$-Guard: Robust Reasoning Enabled LLM Guardrail via Knowledge-Enhanced Logical Reasoning
Kang, Mintong, Li, Bo
As LLMs become increasingly prevalent across various applications, it is critical to establish safety guardrails to moderate input/output content of LLMs. Existing guardrail models treat various safety categories independently and fail to explicitly capture the intercorrelations among them. This has led to limitations such as ineffectiveness due to inadequate training on long-tail data from correlated safety categories, susceptibility to jailbreaking attacks, and inflexibility regarding new safety categories. To address these limitations, we propose $R^2$-Guard, a robust reasoning enabled LLM guardrail via knowledge-enhanced logical reasoning. Specifically, $R^2$-Guard comprises two parts: data-driven category-specific learning and reasoning components. The data-driven guardrail models provide unsafety probabilities of moderated content on different safety categories. We then encode safety knowledge among different categories as first-order logical rules and embed them into a probabilistic graphic model (PGM) based reasoning component. The unsafety probabilities of different categories from data-driven guardrail models are sent to the reasoning component for final inference. We employ two types of PGMs: Markov logic networks (MLNs) and probabilistic circuits (PCs), and optimize PCs to achieve precision-efficiency balance via improved graph structure. To further perform stress tests for guardrail models, we employ a pairwise construction method to construct a new safety benchmark TwinSafety, which features principled categories. We demonstrate the effectiveness of $R^2$-Guard by comparisons with eight strong guardrail models on six safety benchmarks, and demonstrate the robustness of $R^2$-Guard against four SOTA jailbreaking attacks. $R^2$-Guard significantly surpasses SOTA method LlamaGuard by 30.2% on ToxicChat and by 59.5% against jailbreaking attacks.
Certifiably Byzantine-Robust Federated Conformal Prediction
Kang, Mintong, Lin, Zhen, Sun, Jimeng, Xiao, Cao, Li, Bo
Conformal prediction has shown impressive capacity in constructing statistically rigorous prediction sets for machine learning models with exchangeable data samples. The siloed datasets, coupled with the escalating privacy concerns related to local data sharing, have inspired recent innovations extending conformal prediction into federated environments with distributed data samples. However, this framework for distributed uncertainty quantification is susceptible to Byzantine failures. A minor subset of malicious clients can significantly compromise the practicality of coverage guarantees. To address this vulnerability, we introduce a novel framework Rob-FCP, which executes robust federated conformal prediction, effectively countering malicious clients capable of reporting arbitrary statistics with the conformal calibration process. We theoretically provide the conformal coverage bound of Rob-FCP in the Byzantine setting and show that the coverage of Rob-FCP is asymptotically close to the desired coverage level. We also propose a malicious client number estimator to tackle a more challenging setting where the number of malicious clients is unknown to the defender and theoretically shows its effectiveness. We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks on five standard benchmark and real-world healthcare datasets.
COLEP: Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic Circuits
Kang, Mintong, Gürel, Nezihe Merve, Li, Linyi, Li, Bo
Conformal prediction has shown spurring performance in constructing statistically rigorous prediction sets for arbitrary black-box machine learning models, assuming the data is exchangeable. However, even small adversarial perturbations during the inference can violate the exchangeability assumption, challenge the coverage guarantees, and result in a subsequent decline in empirical coverage. In this work, we propose a certifiably robust learning-reasoning conformal prediction framework (COLEP) via probabilistic circuits, which comprise a data-driven learning component that trains statistical models to learn different semantic concepts, and a reasoning component that encodes knowledge and characterizes the relationships among the trained models for logic reasoning. To achieve exact and efficient reasoning, we employ probabilistic circuits (PCs) within the reasoning component. Theoretically, we provide end-to-end certification of prediction coverage for COLEP in the presence of bounded adversarial perturbations. We also provide certified coverage considering the finite size of the calibration set. Furthermore, we prove that COLEP achieves higher prediction coverage and accuracy over a single model as long as the utilities of knowledge models are non-trivial. Empirically, we show the validity and tightness of our certified coverage, demonstrating the robust conformal prediction of COLEP on various datasets, including GTSRB, CIFAR10, and AwA2. We show that COLEP achieves up to 12% improvement in certified coverage on GTSRB, 9% on CIFAR-10, and 14% on AwA2.
MgSvF: Multi-Grained Slow vs. Fast Framework for Few-Shot Class-Incremental Learning
Zhao, Hanbin, Fu, Yongjian, Kang, Mintong, Tian, Qi, Wu, Fei, Li, Xi
As a challenging problem, few-shot class-incremental learning (FSCIL) continually learns a sequence of tasks, confronting the dilemma between slow forgetting of old knowledge and fast adaptation to new knowledge. In this paper, we concentrate on this "slow vs. fast" (SvF) dilemma to determine which knowledge components to be updated in a slow fashion or a fast fashion, and thereby balance old-knowledge preservation and new-knowledge adaptation. We propose a multi-grained SvF learning strategy to cope with the SvF dilemma from two different grains: intra-space (within the same feature space) and inter-space (between two different feature spaces). The proposed strategy designs a novel frequency-aware regularization to boost the intra-space SvF capability, and meanwhile develops a new feature space composition operation to enhance the inter-space SvF learning performance. With the multi-grained SvF learning strategy, our method outperforms the state-of-the-art approaches by a large margin.
C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models
Kang, Mintong, Gürel, Nezihe Merve, Yu, Ning, Song, Dawn, Li, Bo
Despite the impressive capabilities of large language models (LLMs) across diverse applications, they still suffer from trustworthiness issues, such as hallucinations and misalignments. Retrieval-augmented language models (RAG) have been proposed to enhance the credibility of generations by grounding external knowledge, but the theoretical understandings of their generation risks remains unexplored. In this paper, we answer: 1) whether RAG can indeed lead to low generation risks, 2) how to provide provable guarantees on the generation risks of RAG and vanilla LLMs, and 3) what sufficient conditions enable RAG models to reduce generation risks. We propose C-RAG, the first framework to certify generation risks for RAG models. Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks, which we refer to as conformal generation risk. We also provide theoretical guarantees on conformal generation risks for general bounded risk functions under test distribution shifts. We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial. Our intensive empirical results demonstrate the soundness and tightness of our conformal generation risk guarantees across four widely-used NLP datasets on four state-of-the-art retrieval models.
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
Wang, Boxin, Chen, Weixin, Pei, Hengzhi, Xie, Chulin, Kang, Mintong, Zhang, Chenhui, Xu, Chejian, Xiong, Zidi, Dutta, Ritik, Schaeffer, Rylan, Truong, Sang T., Arora, Simran, Mazeika, Mantas, Hendrycks, Dan, Lin, Zinan, Cheng, Yu, Koyejo, Sanmi, Song, Dawn, Li, Bo
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications such as healthcare and finance -- where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives -- including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially because GPT-4 follows (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/; our dataset can be previewed at https://huggingface.co/datasets/AI-Secure/DecodingTrust; a concise version of this work is at https://openreview.net/pdf?id=kaHpo8OZw2.