Kang, Kukjin
Statistical Mechanics of the Mixture of Experts
Kang, Kukjin, Oh, Jong-Hoon
The mixture of experts [1, 2] is a well known example which implements the philosophy of divide-and-conquer elegantly. Whereas this model are gaining more popularity in various applications, there have been little efforts to evaluate generalization capability of these modular approaches theoretically. Here we present the first analytic study of generalization in the mixture of experts from the statistical 184 K. Kang and 1. Oh physics perspective. Use of statistical mechanics formulation have been focused on the study of feedforward neural network architectures close to the multilayer perceptron[5, 6], together with the VC theory[8]. We expect that the statistical mechanics approach can also be effectively used to evaluate more advanced architectures including mixture models.
Statistical Mechanics of the Mixture of Experts
Kang, Kukjin, Oh, Jong-Hoon
Kukjin Kang and Jong-Hoon Oh Department of Physics Pohang University of Science and Technology Hyoja San 31, Pohang, Kyongbuk 790-784, Korea Email: kkj.jhohOgalaxy.postech.ac.kr Abstract We study generalization capability of the mixture of experts learning fromexamples generated by another network with the same architecture. When the number of examples is smaller than a critical value,the network shows a symmetric phase where the role of the experts is not specialized. Upon crossing the critical point, the system undergoes a continuous phase transition to a symmetry breakingphase where the gating network partitions the input space effectively and each expert is assigned to an appropriate subspace. Wealso find that the mixture of experts with multiple level of hierarchy shows multiple phase transitions. 1 Introduction Recently there has been considerable interest among neural network community in techniques that integrate the collective predictions of a set of networks[l, 2, 3, 4]. The mixture of experts [1, 2] is a well known example which implements the philosophy ofdivide-and-conquer elegantly.