Goto

Collaborating Authors

 Kang, Jingu


ClovaCall: Korean Goal-Oriented Dialog Speech Corpus for Automatic Speech Recognition of Contact Centers

arXiv.org Machine Learning

Automatic speech recognition (ASR) via call is essential for various applications, including AI for contact center (AICC) services. Despite the advancement of ASR, however, most publicly available call-based speech corpora such as Switchboard are old-fashioned. Also, most existing call corpora are in English and mainly focus on open domain dialog or general scenarios such as audiobooks. Here we introduce a new large-scale Korean call-based speech corpus under a goal-oriented dialog scenario from more than 11,000 people, i.e., ClovaCall corpus. ClovaCall includes approximately 60,000 pairs of a short sentence and its corresponding spoken utterance in a restaurant reservation domain. We validate the effectiveness of our dataset with intensive experiments using two standard ASR models. Furthermore, we release our ClovaCall dataset and baseline source codes to be available via https://github.com/ClovaAI/ClovaCall.


Deep Learning Reconstruction for 9-View Dual Energy CT Baggage Scanner

arXiv.org Machine Learning

For homeland and transportation security applications, 2D X-ray explosive detection system (EDS) have been widely used, but they have limitations in recognizing 3D shape of the hidden objects. Among various types of 3D computed tomography (CT) systems to address this issue, this paper is interested in a stationary CT using fixed X-ray sources and detectors. However, due to the limited number of projection views, analytic reconstruction algorithms produce severe streaking artifacts. Inspired by recent success of deep learning approach for sparse view CT reconstruction, here we propose a novel image and sinogram domain deep learning architecture for 3D reconstruction from very sparse view measurement. The algorithm has been tested with the real data from a prototype 9-view dual energy stationary CT EDS carry-on baggage scanner developed by GEMSS Medical Systems, Korea, which confirms the superior reconstruction performance over the existing approaches.