Goto

Collaborating Authors

 Kang, Jaewook


DSAI: Unbiased and Interpretable Latent Feature Extraction for Data-Centric AI

arXiv.org Artificial Intelligence

Large language models (LLMs) often struggle to objectively identify latent characteristics in large datasets due to their reliance on pre-trained knowledge rather than actual data patterns. To address this data grounding issue, we propose Data Scientist AI (DSAI), a framework that enables unbiased and interpretable feature extraction through a multi-stage pipeline with quantifiable prominence metrics for evaluating extracted features. On synthetic datasets with known ground-truth features, DSAI demonstrates high recall in identifying expert-defined features while faithfully reflecting the underlying data. Applications on real-world datasets illustrate the framework's practical utility in uncovering meaningful patterns with minimal expert oversight, supporting use cases such as interpretable classification. The title of our paper is chosen from multiple candidates based on DSAI-generated criteria.


Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly impacted the writing process, enabling collaborative content creation and enhancing productivity. However, generating high-quality, user-aligned text remains challenging. In this paper, we propose Writing Path, a framework that uses explicit outlines to guide LLMs in generating goal-oriented, high-quality pieces of writing. Our approach draws inspiration from structured writing planning and reasoning paths, focusing on capturing and reflecting user intentions throughout the writing process. We construct a diverse dataset from unstructured blog posts to benchmark writing performance and introduce a comprehensive evaluation framework assessing the quality of outlines and generated texts. Our evaluations with GPT-3.5-turbo, GPT-4, and HyperCLOVA X demonstrate that the Writing Path approach significantly enhances text quality according to both LLMs and human evaluations. This study highlights the potential of integrating writing-specific techniques into LLMs to enhance their ability to meet the diverse writing needs of users.


HyperCLOVA X Technical Report

arXiv.org Artificial Intelligence

We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.


Empowering Sentence Encoders with Prompting and Label Retrieval for Zero-shot Text Classification

arXiv.org Artificial Intelligence

With contrastive pre-training, sentence encoders are generally optimized to locate semantically similar samples closer to each other in their embedding spaces. In this work, we focus on the potential of their embedding spaces to be readily adapted to zero-shot text classification, as semantically distinct samples are already well-separated. Our framework, RaLP (Retrieval augmented Label Prompts for sentence encoder), encodes prompted label candidates with a sentence encoder, then assigns the label whose prompt embedding has the highest similarity with the input text embedding. In order to compensate for the potentially poorly descriptive labels in their original format, RaLP retrieves sentences that are semantically similar to the original label prompt from external corpora and use them as additional pseudo-label prompts. RaLP achieves competitive or stronger performance than much larger baselines on various closed-set classification and multiple-choice QA datasets under zero-shot settings. We show that the retrieval component plays a pivotal role in RaLP's success, and its results are robustly attained regardless of verbalizer variations.


GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation

arXiv.org Artificial Intelligence

Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and inference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. Ablation studies and a qualitative analysis provide more insights into our approach.