Goto

Collaborating Authors

 Kang, Hyolim


Exploring Scalability of Self-Training for Open-Vocabulary Temporal Action Localization

arXiv.org Artificial Intelligence

The vocabulary size in temporal action localization (TAL) is constrained by the scarcity of large-scale annotated datasets. To address this, recent works incorporate powerful pre-trained vision-language models (VLMs), such as CLIP, to perform open-vocabulary TAL (OV-TAL). However, unlike VLMs trained on extensive image/video-text pairs, existing OV-TAL methods still rely on small, fully labeled TAL datasets for training an action localizer. In this paper, we explore the scalability of self-training with unlabeled YouTube videos for OV-TAL. Our self-training approach consists of two stages. First, a class-agnostic action localizer is trained on a human-labeled TAL dataset and used to generate pseudo-labels for unlabeled videos. Second, the large-scale pseudo-labeled dataset is combined with the human-labeled dataset to train the localizer. Extensive experiments demonstrate that leveraging web-scale videos in self-training significantly enhances the generalizability of an action localizer. Additionally, we highlighted issues with existing OV-TAL evaluation schemes and proposed a new evaluation protocol. Code is released at https://github.com/HYUNJS/STOV-TAL


Object Aware Egocentric Online Action Detection

arXiv.org Artificial Intelligence

Advancements in egocentric video datasets like Ego4D, EPIC-Kitchens, and Ego-Exo4D have enriched the study of first-person human interactions, which is crucial for applications in augmented reality and assisted living. Despite these advancements, current Online Action Detection methods, which efficiently detect actions in streaming videos, are predominantly designed for exocentric views and thus fail to capitalize on the unique perspectives inherent to egocentric videos. To address this gap, we introduce an Object-Aware Module that integrates egocentric-specific priors into existing OAD frameworks, enhancing first-person footage interpretation. Utilizing object-specific details and temporal dynamics, our module improves scene understanding in detecting actions. Validated extensively on the Epic-Kitchens 100 dataset, our work can be seamlessly integrated into existing models with minimal overhead and bring consistent performance enhancements, marking an important step forward in adapting action detection systems to egocentric video analysis.


ComMU: Dataset for Combinatorial Music Generation

arXiv.org Artificial Intelligence

Commercial adoption of automatic music composition requires the capability of generating diverse and high-quality music suitable for the desired context (e.g., music for romantic movies, action games, restaurants, etc.). In this paper, we introduce combinatorial music generation, a new task to create varying background music based on given conditions. Combinatorial music generation creates short samples of music with rich musical metadata, and combines them to produce a complete music. In addition, we introduce ComMU, the first symbolic music dataset consisting of short music samples and their corresponding 12 musical metadata for combinatorial music generation. Notable properties of ComMU are that (1) dataset is manually constructed by professional composers with an objective guideline that induces regularity, and (2) it has 12 musical metadata that embraces composers' intentions. Our results show that we can generate diverse high-quality music only with metadata, and that our unique metadata such as track-role and extended chord quality improves the capacity of the automatic composition. We highly recommend watching our video before reading the paper (https://pozalabs.github.io/ComMU/).


UBoCo : Unsupervised Boundary Contrastive Learning for Generic Event Boundary Detection

arXiv.org Artificial Intelligence

Generic Event Boundary Detection (GEBD) is a newly suggested video understanding task that aims to find one level deeper semantic boundaries of events. Bridging the gap between natural human perception and video understanding, it has various potential applications, including interpretable and semantically valid video parsing. Still at an early development stage, existing GEBD solvers are simple extensions of relevant video understanding tasks, disregarding GEBD's distinctive characteristics. In this paper, we propose a novel framework for unsupervised/supervised GEBD, by using the Temporal Self-similarity Matrix (TSM) as the video representation. The new Recursive TSM Parsing (RTP) algorithm exploits local diagonal patterns in TSM to detect boundaries, and it is combined with the Boundary Contrastive (BoCo) loss to train our encoder to generate more informative TSMs. Our framework can be applied to both unsupervised and supervised settings, with both achieving state-of-the-art performance by a huge margin in GEBD benchmark. Especially, our unsupervised method outperforms the previous state-of-the-art "supervised" model, implying its exceptional efficacy.


Mature GAIL: Imitation Learning for Low-level and High-dimensional Input using Global Encoder and Cost Transformation

arXiv.org Machine Learning

Recently, GAIL framework and various variants have shown remarkable possibilities for solving practical MDP problems. However, detailed researches of low-level, and high-dimensional state input in this framework, such as image sequences, has not been conducted. Furthermore, the cost function learned in the traditional GAIL frame-work only lies on a negative range, acting as a non-penalized reward and making the agent difficult to learn the optimal policy. In this paper, we propose a new algorithm based on the GAIL framework that includes a global encoder and the reward penalization mechanism. The global encoder solves two issues that arise when applying GAIL framework to high-dimensional image state. Also, it is shown that the penalization mechanism provides more adequate reward to the agent, resulting in stable performance improvement. Our approach's potential can be backed up by the fact that it is generally applicable to variants of GAIL framework. We conducted in-depth experiments by applying our methods to various variants of the GAIL framework. And, the results proved that our method significantly improves the performances when it comes to low-level and high-dimensional tasks.