Goto

Collaborating Authors

 Kang, Gi-Cheon


CLIP-RT: Learning Language-Conditioned Robotic Policies from Natural Language Supervision

arXiv.org Artificial Intelligence

This paper explores how non-experts can teach robots desired skills in their environments. We argue that natural language is an intuitive and accessible interface for robot learning. To this end, we investigate two key aspects: (1) how non-experts collect robotic data using natural language supervision and (2) how pre-trained vision-language models learn end-to-end policies directly from this supervision. We propose a data collection framework that collects robot demonstrations based on natural language supervision (e.g., "move forward") and further augments these demonstrations. Next, we introduce a model that learns language-conditioned policies from natural language supervision called CLIP-RT. Our model employs pre-trained CLIP models and learns to predict actions represented in language via contrastive imitation learning. We first train CLIP-RT on large-scale robotic data and then enable it to learn desired skills using data collected from our framework. CLIP-RT shows strong capabilities in acquiring novel manipulation skills, outperforming the state-of-the-art model, OpenVLA (7B parameters), by 17% in average success rates, while using 7x fewer parameters (1B).


Zero-Shot Vision-and-Language Navigation with Collision Mitigation in Continuous Environment

arXiv.org Artificial Intelligence

We propose the zero-shot Vision-and-Language Navigation with Collision Mitigation (VLN-CM), which takes these considerations. VLN-CM is composed of four modules and predicts the direction and distance of the next movement at each step. We utilize large foundation models for each modules. To select the direction, we use the Attention Spot Predictor (ASP), View Selector (VS), and Progress Monitor (PM). The ASP employs a Large Language Model (e.g. ChatGPT) to split navigation instructions into attention spots, which are objects or scenes at the location to move to (e.g. a yellow door). The VS selects from panorama images provided at 30-degree intervals the one that includes the attention spot, using CLIP similarity. We then choose the angle of the selected image as the direction to move in. The PM uses a rule-based approach to decide which attention spot to focus on next, among multiple spots derived from the instructions. If the similarity between the current attention spot and the visual observations decreases consecutively at each step, the PM determines that the agent has passed the current spot and moves on to the next one. For selecting the distance to move, we employed the Open Map Predictor (OMP). The OMP uses panorama depth information to predict an occupancy mask. We then selected a collision-free distance in the predicted direction based on the occupancy mask. We evaluated our method using the validation data of VLN-CE. Our approach showed better performance than several baseline methods, and the OPM was effective in mitigating collisions for the agent.


Socratic Planner: Inquiry-Based Zero-Shot Planning for Embodied Instruction Following

arXiv.org Artificial Intelligence

Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in 3D environments. One of the primary challenges in EIF is compositional task planning, which is often addressed with supervised or in-context learning with labeled data. To this end, we introduce the Socratic Planner, the first zero-shot planning method that infers without the need for any training data. Socratic Planner first decomposes the instructions into substructural information of the task through self-questioning and answering, translating it into a high-level plan, i.e., a sequence of subgoals. Subgoals are executed sequentially, with our visually grounded re-planning mechanism adjusting plans dynamically through a dense visual feedback. We also introduce an evaluation metric of high-level plans, RelaxedHLP, for a more comprehensive evaluation. Experiments demonstrate the effectiveness of the Socratic Planner, achieving competitive performance on both zero-shot and few-shot task planning in the ALFRED benchmark, particularly excelling in tasks requiring higher-dimensional inference. Additionally, a precise adjustments in the plan were achieved by incorporating environmental visual information.


Continual Vision-and-Language Navigation

arXiv.org Artificial Intelligence

Vision-and-Language Navigation (VLN) agents navigate to a destination using natural language instructions and the visual information they observe. Existing methods for training VLN agents presuppose fixed datasets, leading to a significant limitation: the introduction of new environments necessitates retraining with previously encountered environments to preserve their knowledge. This makes it difficult to train VLN agents that operate in the ever-changing real world. To address this limitation, we present the Continual Vision-and-Language Navigation (CVLN) paradigm, designed to evaluate agents trained through a continual learning process. For the training and evaluation of CVLN agents, we re-arrange existing VLN datasets to propose two datasets: CVLN-I, focused on navigation via initial-instruction interpretation, and CVLN-D, aimed at navigation through dialogue with other agents. Furthermore, we propose two novel rehearsal-based methods for CVLN, Perplexity Replay (PerpR) and Episodic Self-Replay (ESR). PerpR prioritizes replaying challenging episodes based on action perplexity, while ESR replays previously predicted action logits to preserve learned behaviors. We demonstrate the effectiveness of the proposed methods on CVLN through extensive experiments.


PGA: Personalizing Grasping Agents with Single Human-Robot Interaction

arXiv.org Artificial Intelligence

Language-Conditioned Robotic Grasping (LCRG) aims to develop robots that ground and grasp objects based on natural language instructions. While robots capable of recognizing personal objects like "my wallet" can interact more naturally with non-expert users, current LCRG systems primarily limit robots to understanding only generic expressions. To this end, we introduce a task scenario GraspMine with a novel dataset that aims to locate and grasp personal objects given personal indicators via learning from a single human-robot interaction. To address GraspMine, we propose Personalized Grasping Agent (PGA), that learns personal objects by propagating user-given information through a Reminiscence-a collection of raw images from the user's environment. Specifically, PGA acquires personal object information by a user presenting a personal object with its associated indicator, followed by PGA inspecting the object by rotating it. Based on the acquired information, PGA pseudo-labels objects in the Reminiscence by our proposed label propagation algorithm. Harnessing the information acquired from the interactions and the pseudo-labeled objects in the Reminiscence, PGA adapts the object grounding model to grasp personal objects. Experiments on GraspMine show that PGA significantly outperforms baseline methods both in offline and online settings, signifying its effectiveness and personalization applicability on real-world scenarios. Finally, qualitative analysis shows the effectiveness of PGA through a detailed investigation of results in each phase.


PROGrasp: Pragmatic Human-Robot Communication for Object Grasping

arXiv.org Artificial Intelligence

We argue that the next-generation robotic system should Recent advances in robotics and artificial intelligence (AI) have pragmatic reasoning ability - capture the user's intention have made intelligent robots ubiquitous in our daily lives. To with contextual information and achieve the desired get closer to non-expert users, robots should communicate goal. Therefore, we introduce a new task, Pragmatic-IOG, with humans using natural language and make decisions to study pragmatic reasoning behavior in IOG. As shown in based on the interaction. Notably, in the field of humanrobot Figure 1, we consider a scenario where a human user begins interaction, there have been extensive studies [1]-[5] a conversation with an intention-oriented utterance like "My on developing such robots under the umbrella of Interactive device runs out of battery." The robot should then find all Object Grasping (IOG). A typical scenario of IOG starts valid object candidates (e.g., the red-colored object regions mentioning the target object, such as "Give me the plastic in Figure 1) via visual grounding [11] and ask a question for bottle", but there is more than one object in the scene that disambiguation. After receiving the user's response, the robot meets the instruction. The robot should disambiguate the pinpoints the target object and grasps the desired object.


GVCCI: Lifelong Learning of Visual Grounding for Language-Guided Robotic Manipulation

arXiv.org Artificial Intelligence

Language-Guided Robotic Manipulation (LGRM) is a challenging task as it requires a robot to understand human instructions to manipulate everyday objects. Recent approaches in LGRM rely on pre-trained Visual Grounding (VG) models to detect objects without adapting to manipulation environments. This results in a performance drop due to a substantial domain gap between the pre-training and real-world data. A straightforward solution is to collect additional training data, but the cost of human-annotation is extortionate. In this paper, we propose Grounding Vision to Ceaselessly Created Instructions (GVCCI), a lifelong learning framework for LGRM, which continuously learns VG without human supervision. GVCCI iteratively generates synthetic instruction via object detection and trains the VG model with the generated data. We validate our framework in offline and online settings across diverse environments on different VG models. Experimental results show that accumulating synthetic data from GVCCI leads to a steady improvement in VG by up to 56.7% and improves resultant LGRM by up to 29.4%. Furthermore, the qualitative analysis shows that the unadapted VG model often fails to find correct objects due to a strong bias learned from the pre-training data. Finally, we introduce a novel VG dataset for LGRM, consisting of nearly 252k triplets of image-object-instruction from diverse manipulation environments.


The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training

arXiv.org Artificial Intelligence

Visual dialog (VisDial) is a task of answering a sequence of questions grounded in an image, using the dialog history as context. Prior work has trained the dialog agents solely on VisDial data via supervised learning or leveraged pre-training on related vision-and-language datasets. This paper presents a semi-supervised learning approach for visually-grounded dialog, called Generative Self-Training (GST), to leverage unlabeled images on the Web. Specifically, GST first retrieves in-domain images through out-of-distribution detection and generates synthetic dialogs regarding the images via multimodal conditional text generation. GST then trains a dialog agent on the synthetic and the original VisDial data. As a result, GST scales the amount of training data up to an order of magnitude that of VisDial (1.2M to 12.9M QA data). For robust training of the synthetic dialogs, we also propose perplexity-based data selection and multimodal consistency regularization. Evaluation on VisDial v1.0 and v0.9 datasets shows that GST achieves new state-of-the-art results on both datasets. We further observe the robustness of GST against both visual and textual adversarial attacks. Finally, GST yields strong performance gains in the low-data regime. Code is available at https://github.com/gicheonkang/gst-visdial.


Attend What You Need: Motion-Appearance Synergistic Networks for Video Question Answering

arXiv.org Artificial Intelligence

Video Question Answering is a task which requires an AI agent to answer questions grounded in video. This task entails three key challenges: (1) understand the intention of various questions, (2) capturing various elements of the input video (e.g., object, action, causality), and (3) cross-modal grounding between language and vision information. We propose Motion-Appearance Synergistic Networks (MASN), which embed two cross-modal features grounded on motion and appearance information and selectively utilize them depending on the question's intentions. MASN consists of a motion module, an appearance module, and a motion-appearance fusion module. The motion module computes the action-oriented cross-modal joint representations, while the appearance module focuses on the appearance aspect of the input video. Finally, the motion-appearance fusion module takes each output of the motion module and the appearance module as input, and performs question-guided fusion. As a result, MASN achieves new state-of-the-art performance on the TGIF-QA and MSVD-QA datasets. We also conduct qualitative analysis by visualizing the inference results of MASN. The code is available at https://github.com/ahjeongseo/MASN-pytorch.