Kang, Byeong
Impact and influence of modern AI in metadata management
Yang, Wenli, Fu, Rui, Amin, Muhammad Bilal, Kang, Byeong
Metadata management plays a critical role in data governance, resource discovery, and decision-making in the data-driven era. While traditional metadata approaches have primarily focused on organization, classification, and resource reuse, the integration of modern artificial intelligence (AI) technologies has significantly transformed these processes. This paper investigates both traditional and AI-driven metadata approaches by examining open-source solutions, commercial tools, and research initiatives. A comparative analysis of traditional and AI-driven metadata management methods is provided, highlighting existing challenges and their impact on next-generation datasets. The paper also presents an innovative AI-assisted metadata management framework designed to address these challenges. This framework leverages more advanced modern AI technologies to automate metadata generation, enhance governance, and improve the accessibility and usability of modern datasets. Finally, the paper outlines future directions for research and development, proposing opportunities to further advance metadata management in the context of AI-driven innovation and complex datasets.
A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods
Some, Lilian, Yang, Wenli, Bain, Michael, Kang, Byeong
The rapid development of artificial intelligence has brought about substantial advancements in the field. One promising direction is the integration of Large Language Models (LLMs) with structured knowledge-based systems. This approach aims to enhance AI capabilities by combining the generative language understanding of LLMs with the precise knowledge representation of structured systems. This survey explores the synergy between LLMs and knowledge bases, focusing on real-world applications and addressing associated technical, operational, and ethical challenges. Through a comprehensive literature review, the study identifies critical issues and evaluates existing solutions. The paper highlights the benefits of integrating generative AI with knowledge bases, including improved data contextualization, enhanced model accuracy, and better utilization of knowledge resources. The findings provide a detailed overview of the current state of research, identify key gaps, and offer actionable recommendations. These insights contribute to advancing AI technologies and support their practical deployment across various sectors.