Goto

Collaborating Authors

 Kanerva, Jenna


Extracting Social Connections from Finnish Karelian Refugee Interviews Using LLMs

arXiv.org Artificial Intelligence

We performed a zero-shot information extraction study on a historical collection of 89,339 brief Finnish-language interviews of refugee families relocated post-WWII from Finnish Eastern Karelia. Our research objective is two-fold. First, we aim to extract social organizations and hobbies from the free text of the interviews, separately for each family member. These can act as a proxy variable indicating the degree of social integration of refugees in their new environment. Second, we aim to evaluate several alternative ways to approach this task, comparing a number of generative models and a supervised learning approach, to gain a broader insight into the relative merits of these different approaches and their applicability in similar studies. We find that the best generative model (GPT-4) is roughly on par with human performance, at an F-score of 88.8%. Interestingly, the best open generative model (Llama-3-70B-Instruct) reaches almost the same performance, at 87.7% F-score, demonstrating that open models are becoming a viable alternative for some practical tasks even on non-English data. Additionally, we test a supervised learning alternative, where we fine-tune a Finnish BERT model (FinBERT) using GPT-4 generated training data. By this method, we achieved an F-score of 84.1% already with 6K interviews up to an F-score of 86.3% with 30k interviews. Such an approach would be particularly appealing in cases where the computational resources are limited, or there is a substantial mass of data to process.


OCR Error Post-Correction with LLMs in Historical Documents: No Free Lunches

arXiv.org Artificial Intelligence

Optical Character Recognition (OCR) systems often introduce errors when transcribing historical documents, leaving room for post-correction to improve text quality. This study evaluates the use of open-weight LLMs for OCR error correction in historical English and Finnish datasets. We explore various strategies, including parameter optimization, quantization, segment length effects, and text continuation methods. Our results demonstrate that while modern LLMs show promise in reducing character error rates (CER) in English, a practically useful performance for Finnish was not reached. Our findings highlight the potential and limitations of LLMs in scaling OCR post-correction for large historical corpora.


FinGPT: Large Generative Models for a Small Language

arXiv.org Artificial Intelligence

Large language models (LLMs) excel in many tasks in NLP and beyond, but most open models have very limited coverage of smaller languages and LLM work tends to focus on languages where nearly unlimited data is available for pretraining. In this work, we study the challenges of creating LLMs for Finnish, a language spoken by less than 0.1% of the world population. We compile an extensive dataset of Finnish combining web crawls, news, social media and eBooks. We pursue two approaches to pretrain models: 1) we train seven monolingual models from scratch (186M to 13B parameters) dubbed FinGPT, 2) we continue the pretraining of the multilingual BLOOM model on a mix of its original training data and Finnish, resulting in a 176 billion parameter model we call BLUUMI. For model evaluation, we introduce FIN-bench, a version of BIG-bench with Finnish tasks. We also assess other model qualities such as toxicity and bias. Our models and tools are openly available at https://turkunlp.org/gpt3-finnish.


Semantic Search as Extractive Paraphrase Span Detection

arXiv.org Artificial Intelligence

In this paper, we approach the problem of semantic search by framing the search task as paraphrase span detection, i.e. given a segment of text as a query phrase, the task is to identify its paraphrase in a given document, the same modelling setup as typically used in extractive question answering. On the Turku Paraphrase Corpus of 100,000 manually extracted Finnish paraphrase pairs including their original document context, we find that our paraphrase span detection model outperforms two strong retrieval baselines (lexical similarity and BERT sentence embeddings) by 31.9pp and 22.4pp respectively in terms of exact match, and by 22.3pp and 12.9pp in terms of token-level F-score. This demonstrates a strong advantage of modelling the task in terms of span retrieval, rather than sentence similarity. Additionally, we introduce a method for creating artificial paraphrase data through back-translation, suitable for languages where manually annotated paraphrase resources for training the span detection model are not available.