Kanakis, Menelaos
Residual Learning for Image Point Descriptors
Shrestha, Rashik, Chhatkuli, Ajad, Kanakis, Menelaos, Van Gool, Luc
Local image feature descriptors have had a tremendous impact on the development and application of computer vision methods. It is therefore unsurprising that significant efforts are being made for learning-based image point descriptors. However, the advantage of learned methods over handcrafted methods in real applications is subtle and more nuanced than expected. Moreover, handcrafted descriptors such as SIFT and SURF still perform better point localization in Structure-from-Motion (SfM) compared to many learned counterparts. In this paper, we propose a very simple and effective approach to learning local image descriptors by using a hand-crafted detector and descriptor. Specifically, we choose to learn only the descriptors, supported by handcrafted descriptors while discarding the point localization head. We optimize the final descriptor by leveraging the knowledge already present in the handcrafted descriptor. Such an approach of optimization allows us to discard learning knowledge already present in non-differentiable functions such as the hand-crafted descriptors and only learn the residual knowledge in the main network branch. This offers 50X convergence speed compared to the standard baseline architecture of SuperPoint while at inference the combined descriptor provides superior performance over the learned and hand-crafted descriptors. This is done with minor increase in the computations over the baseline learned descriptor. Our approach has potential applications in ensemble learning and learning with non-differentiable functions. We perform experiments in matching, camera localization and Structure-from-Motion in order to showcase the advantages of our approach.
ZippyPoint: Fast Interest Point Detection, Description, and Matching through Mixed Precision Discretization
Kanakis, Menelaos, Maurer, Simon, Spallanzani, Matteo, Chhatkuli, Ajad, Van Gool, Luc
Efficient detection and description of geometric regions in images is a prerequisite in visual systems for localization and mapping. Such systems still rely on traditional hand-crafted methods for efficient generation of lightweight descriptors, a common limitation of the more powerful neural network models that come with high compute and specific hardware requirements. In this paper, we focus on the adaptations required by detection and description neural networks to enable their use in computationally limited platforms such as robots, mobile, and augmented reality devices. To that end, we investigate and adapt network quantization techniques to accelerate inference and enable its use on compute limited platforms. In addition, we revisit common practices in descriptor quantization and propose the use of a binary descriptor normalization layer, enabling the generation of distinctive binary descriptors with a constant number of ones. ZippyPoint, our efficient quantized network with binary descriptors, improves the network runtime speed, the descriptor matching speed, and the 3D model size, by at least an order of magnitude when compared to full-precision counterparts. These improvements come at a minor performance degradation as evaluated on the tasks of homography estimation, visual localization, and map-free visual relocalization. Code and models are available at https://github.com/menelaoskanakis/ZippyPoint.
T-Basis: a Compact Representation for Neural Networks
Obukhov, Anton, Rakhuba, Maxim, Georgoulis, Stamatios, Kanakis, Menelaos, Dai, Dengxin, Van Gool, Luc
We introduce T-Basis, a novel concept for a compact representation of a set of tensors, each of an arbitrary shape, which is often seen in Neural Networks. Each of the tensors in the set is modeled using Tensor Rings, though the concept applies to other Tensor Networks. Owing its name to the T-shape of nodes in diagram notation of Tensor Rings, T-Basis is simply a list of equally shaped three-dimensional tensors, used to represent Tensor Ring nodes. Such representation allows us to parameterize the tensor set with a small number of parameters (coefficients of the T-Basis tensors), scaling logarithmically with each tensor's size in the set and linearly with the dimensionality of T-Basis. We evaluate the proposed approach on the task of neural network compression and demonstrate that it reaches high compression rates at acceptable performance drops. Finally, we analyze memory and operation requirements of the compressed networks and conclude that T-Basis networks are equally well suited for training and inference in resource-constrained environments and usage on the edge devices.