Goto

Collaborating Authors

 Kalischek, Nikolai


CubeDiff: Repurposing Diffusion-Based Image Models for Panorama Generation

arXiv.org Artificial Intelligence

We introduce a novel method for generating 360{\deg} panoramas from text prompts or images. Our approach leverages recent advances in 3D generation by employing multi-view diffusion models to jointly synthesize the six faces of a cubemap. Unlike previous methods that rely on processing equirectangular projections or autoregressive generation, our method treats each face as a standard perspective image, simplifying the generation process and enabling the use of existing multi-view diffusion models. We demonstrate that these models can be adapted to produce high-quality cubemaps without requiring correspondence-aware attention layers. Our model allows for fine-grained text control, generates high resolution panorama images and generalizes well beyond its training set, whilst achieving state-of-the-art results, both qualitatively and quantitatively. Project page: https://cubediff.github.io/


TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation

arXiv.org Artificial Intelligence

Probabilistic denoising diffusion models (DDMs) have set a new standard for 2D image generation. Extending DDMs for 3D content creation is an active field of research. Here, we propose TetraDiffusion, a diffusion model that operates on a tetrahedral partitioning of 3D space to enable efficient, high-resolution 3D shape generation. Our model introduces operators for convolution and transpose convolution that act directly on the tetrahedral partition, and seamlessly includes additional attributes such as color. Remarkably, TetraDiffusion enables rapid sampling of detailed 3D objects in nearly real-time with unprecedented resolution. It's also adaptable for generating 3D shapes conditioned on 2D images. Compared to existing 3D mesh diffusion techniques, our method is up to 200 times faster in inference speed, works on standard consumer hardware, and delivers superior results.


Satellite-based high-resolution maps of cocoa planted area for C\^ote d'Ivoire and Ghana

arXiv.org Artificial Intelligence

In both countries, cocoa is the primary perennial crop, providing income to almost two million farmers. Yet precise maps of cocoa planted area are missing, hindering accurate quantification of expansion in protected areas, production and yields, and limiting information available for improved sustainability governance. Here, we combine cocoa plantation data with publicly available satellite imagery in a deep learning framework and create high-resolution maps of cocoa plantations for both countries, validated in situ. Our results suggest that cocoa cultivation is an underlying driver of over 37 % and 13 % of forest loss in protected areas in Côte d'Ivoire and Ghana, respectively, and that official reports substantially underestimate the planted area, up to 40 % in Ghana. These maps serve as a crucial building block to advance understanding of conservation and economic development in cocoa producing regions.


BiasBed -- Rigorous Texture Bias Evaluation

arXiv.org Artificial Intelligence

The well-documented presence of texture bias in modern convolutional neural networks has led to a plethora of algorithms that promote an emphasis on shape cues, often to support generalization to new domains. Yet, common datasets, benchmarks and general model selection strategies are missing, and there is no agreed, rigorous evaluation protocol. In this paper, we investigate difficulties and limitations when training networks with reduced texture bias. In particular, we also show that proper evaluation and meaningful comparisons between methods are not trivial. We introduce BiasBed, a testbed for texture- and style-biased training, including multiple datasets and a range of existing algorithms. It comes with an extensive evaluation protocol that includes rigorous hypothesis testing to gauge the significance of the results, despite the considerable training instability of some style bias methods. Our extensive experiments, shed new light on the need for careful, statistically founded evaluation protocols for style bias (and beyond). E.g., we find that some algorithms proposed in the literature do not significantly mitigate the impact of style bias at all. With the release of BiasBed, we hope to foster a common understanding of consistent and meaningful comparisons, and consequently faster progress towards learning methods free of texture bias. Code is available at https://github.com/D1noFuzi/BiasBed