Goto

Collaborating Authors

 Kak, Avi


Evidence Accumulation and Flow of Control in a Hierarchical Spatial Reasoning System

AI Magazine

A fundamental goal of computer vision is the development of systems capable of carrying out scene interpretation while taking into account all the available knowledge. In this article, we focus on how the interpretation task can be aided by the expected scene information (such as map knowledge), which, in most cases, would not be in registration with the perceived scene. The system is implemented as a two-panel, six-level blackboard and uses the Dempster-Shafer formalism to accomplish inexact reasoning in a hierarchical space. Inexact reasoning involves exploiting, at different levels of abstraction, any internal geometric consistencies in the data and between the data and the expected scene.


Spatial Reasoning (Editorial)

AI Magazine

A guest editorial describing the special issue on spatial reasoning: "We conceive of space as a completely empty, infinite, three-dimensional, isotropic, disembodied receptacle distinct from the earth or any object that might be located on the earth, one that is capable of housing not only things but also such incorporeal mathematical entities as points and infinite straight lines. Such a strange idea -especially if it were taken to describe something that exists in this world-was unthinkable before the seventeenth century; yet not even Galileo fully accepted the idea of such a world as real. For him, a "straight line" was still bound to the earth's surface. The transformation that led to the reification of geometry, though basically one of attitude and perception rather than of empirical observation, profoundly affected the course of science."


Spatial Reasoning (Editorial)

AI Magazine

A guest editorial describing the special issue on spatial reasoning: "We conceive of space as a completely empty, infinite, three-dimensional, isotropic, disembodied receptacle distinct from the earth or any object that might be located on the earth, one that is capable of housing not only things but also such incorporeal mathematical entities as points and infinite straight lines. Such a strange idea -especially if it were taken to describe something that exists in this world-was unthinkable before the seventeenth century; yet not even Galileo fully accepted the idea of such a world as real. For him, a "straight line" was still bound to the earth's surface. Not until Newton was the task of "geometrization of the world" ... completed. The transformation that led to the reification of geometry, though basically one of attitude and perception rather than of empirical observation, profoundly affected the course of science."


Evidence Accumulation and Flow of Control in a Hierarchical Spatial Reasoning System

AI Magazine

A fundamental goal of computer vision is the development of systems capable of carrying out scene interpretation while taking into account all the available knowledge. In this article, we focus on how the interpretation task can be aided by the expected scene information (such as map knowledge), which, in most cases, would not be in registration with the perceived scene. The proposed approach is applicable to the interpretation of scenes with three-dimensional structures as long as it is possible to generate the equivalent two-dimensional orthogonal or perspective projections of the structures in the expected scene. The system is implemented as a two-panel, six-level blackboard and uses the Dempster-Shafer formalism to accomplish inexact reasoning in a hierarchical space. Inexact reasoning involves exploiting, at different levels of abstraction, any internal geometric consistencies in the data and between the data and the expected scene. As they are discovered, these consistencies are used to update the system's belief in associating a data element with a particular entity from the expected scene.