Goto

Collaborating Authors

 Kailath, Thomas


Brain-inspired automated visual object discovery and detection

arXiv.org Machine Learning

Despite significant recent progress, machine vision systems lag considerably behind their biological counterparts in performance, scalability, and robustness. A distinctive hallmark of the brain is its ability to automatically discover and model objects, at multiscale resolutions, from repeated exposures to unlabeled contextual data and then to be able to robustly detect the learned objects under various nonideal circumstances, such as partial occlusion and different view angles. Replication of such capabilities in a machine would require three key ingredients: (i) access to large-scale perceptual data of the kind that humans experience, (ii) flexible representations of objects, and (iii) an efficient unsupervised learning algorithm. The Internet fortunately provides unprecedented access to vast amounts of visual data. This paper leverages the availability of such data to develop a scalable framework for unsupervised learning of object prototypes--brain-inspired flexible, scale, and shift invariant representations of deformable objects (e.g., humans, motorcycles, cars, airplanes) comprised of parts, their different configurations and views, and their spatial relationships. Computationally, the object prototypes are represented as geometric associative networks using probabilistic constructs such as Markov random fields. We apply our framework to various datasets and show that our approach is computationally scalable and can construct accurate and operational part-aware object models much more efficiently than in much of the recent computer vision literature. We also present efficient algorithms for detection and localization in new scenes of objects and their partial views.




Hoo Optimality Criteria for LMS and Backpropagation

Neural Information Processing Systems

This fact provides a theoretical justification of the widely observed excellent robustness properties of the LMS and backpropagation algorithms. We further discuss some implications of these results.


Hoo Optimality Criteria for LMS and Backpropagation

Neural Information Processing Systems

This fact provides a theoretical justification of the widely observed excellent robustness properties of the LMS and backpropagation algorithms. We further discuss some implications of these results. 1 Introduction The LMS algorithm was originally conceived as an approximate recursive procedure that solves the following problem (Widrow and Hoff, 1960): given a sequence of n x 1 input column vectors {hd, and a corresponding sequence of desired scalar responses { di


Computing with Almost Optimal Size Neural Networks

Neural Information Processing Systems

Artificial neural networks are comprised of an interconnected collection of certain nonlinear devices; examples of commonly used devices include linear threshold elements, sigmoidal elements and radial-basis elements. We employ results from harmonic analysis and the theory of rational approximation to obtain almost tight lower bounds on the size (i.e.


Computing with Almost Optimal Size Neural Networks

Neural Information Processing Systems

Artificial neural networks are comprised of an interconnected collection of certain nonlinear devices; examples of commonly used devices include linear threshold elements, sigmoidal elements and radial-basis elements. We employ results from harmonic analysis and the theory of rational approximation to obtain almost tight lower bounds on the size (i.e.


Computing with Almost Optimal Size Neural Networks

Neural Information Processing Systems

Artificial neural networks are comprised of an interconnected collection of certain nonlinear devices; examples of commonly used devices include linear threshold elements, sigmoidal elements and radial-basis elements. We employ results from harmonic analysis and the theory of rational approximation toobtain almost tight lower bounds on the size (i.e.


Neural Network Weight Matrix Synthesis Using Optimal Control Techniques

Neural Information Processing Systems

Given a set of input-output training samples, we describe a procedure for determining the time sequence of weights for a dynamic neural network to model an arbitrary input-output process. We formulate the input-output mapping problem as an optimal control problem, defining a performance index to be minimized as a function of time-varying weights. We solve the resulting nonlinear two-point-boundary-value problem, and this yields the training rule. For the performance index chosen, this rule turns out to be a continuous time generalization of the outer product rule earlier suggested heuristically by Hopfield for designing associative memories. Learning curves for the new technique are presented.


Neural Network Weight Matrix Synthesis Using Optimal Control Techniques

Neural Information Processing Systems

Given a set of input-output training samples, we describe a procedure for determining the time sequence of weights for a dynamic neural network to model an arbitrary input-output process. We formulate the input-output mapping problem as an optimal control problem, defining a performance index to be minimized as a function of time-varying weights. We solve the resulting nonlinear two-point-boundary-value problem, and this yields the training rule. For the performance index chosen, this rule turns out to be a continuous time generalization of the outer product rule earlier suggested heuristically by Hopfield for designing associative memories. Learning curves for the new technique are presented.