Kailath, T.
On the Circuit Complexity of Neural Networks
Roychowdhury, V. P., Siu, K. Y., Orlitsky, A., Kailath, T.
Viewing n-variable boolean functions as vectors in'R'2", we invoke tools from linear algebra and linear programming to derive new results on the realizability of boolean functions using threshold gat.es. Using this approach, one can obtain: (1) upper-bounds on the number of spurious memories in HopfielJ networks, and on the number of functions implementable by a depth-d threshold circuit; (2) a lower bound on the number of ort.hogonal input.
On the Circuit Complexity of Neural Networks
Roychowdhury, V. P., Siu, K. Y., Orlitsky, A., Kailath, T.
Viewing n-variable boolean functions as vectors in'R'2", we invoke tools from linear algebra and linear programming to derive new results on the realizability of boolean functions using threshold gat.es. Using this approach, one can obtain: (1) upper-bounds on the number of spurious memories in HopfielJ networks, and on the number of functions implementable by a depth-d threshold circuit; (2) a lower bound on the number of ort.hogonal input.