Goto

Collaborating Authors

 Kacmarcik, G. J.


A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn

Neural Information Processing Systems

In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributed representations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained by known structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.


A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn

Neural Information Processing Systems

In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributed representations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained by known structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.


A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn

Neural Information Processing Systems

In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributedrepresentations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained byknown structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.