Goto

Collaborating Authors

 Kabiri, Arman


Meeting Summarization: A Survey of the State of the Art

arXiv.org Artificial Intelligence

Information overloading requires the need for summarizers to extract salient information from the text. Currently, there is an overload of dialogue data due to the rise of virtual communication platforms. The rise of Covid-19 has led people to rely on online communication platforms like Zoom, Slack, Microsoft Teams, Discord, etc. to conduct their company meetings. Instead of going through the entire meeting transcripts, people can use meeting summarizers to select useful data. Nevertheless, there is a lack of comprehensive surveys in the field of meeting summarizers. In this survey, we aim to cover recent meeting summarization techniques. Our survey offers a general overview of text summarization along with datasets and evaluation metrics for meeting summarization. We also provide the performance of each summarizer on a leaderboard. We conclude our survey with different challenges in this domain and potential research opportunities for future researchers.


ParsiNLU: A Suite of Language Understanding Challenges for Persian

arXiv.org Artificial Intelligence

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this rich language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of high-level tasks -- Reading Comprehension, Textual Entailment, etc. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5$k$ new instances across 6 distinct NLU tasks. Besides, we present the first results on state-of-the-art monolingual and multi-lingual pre-trained language-models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.