Goto

Collaborating Authors

 Kabanza, Froduald


Preventing Jailbreak Prompts as Malicious Tools for Cybercriminals: A Cyber Defense Perspective

arXiv.org Artificial Intelligence

Jailbreak prompts pose a significant threat in AI and cybersecurity, as they are crafted to bypass ethical safeguards in large language models, potentially enabling misuse by cybercriminals. This paper analyzes jailbreak prompts from a cyber defense perspective, exploring techniques like prompt injection and context manipulation that allow harmful content generation, content filter evasion, and sensitive information extraction. We assess the impact of successful jailbreaks, from misinformation and automated social engineering to hazardous content creation, including bioweapons and explosives. To address these threats, we propose strategies involving advanced prompt analysis, dynamic safety protocols, and continuous model fine-tuning to strengthen AI resilience. Additionally, we highlight the need for collaboration among AI researchers, cybersecurity experts, and policymakers to set standards for protecting AI systems. Through case studies, we illustrate these cyber defense approaches, promoting responsible AI practices to maintain system integrity and public trust. \textbf{\color{red}Warning: This paper contains content which the reader may find offensive.}


Deep Learning for Network Anomaly Detection under Data Contamination: Evaluating Robustness and Mitigating Performance Degradation

arXiv.org Artificial Intelligence

Deep learning (DL) has emerged as a crucial tool in network anomaly detection (NAD) for cybersecurity. While DL models for anomaly detection excel at extracting features and learning patterns from data, they are vulnerable to data contamination -- the inadvertent inclusion of attack-related data in training sets presumed benign. This study evaluates the robustness of six unsupervised DL algorithms against data contamination using our proposed evaluation protocol. Results demonstrate significant performance degradation in state-of-the-art anomaly detection algorithms when exposed to contaminated data, highlighting the critical need for self-protection mechanisms in DL-based NAD models. To mitigate this vulnerability, we propose an enhanced auto-encoder with a constrained latent representation, allowing normal data to cluster more densely around a learnable center in the latent space. Our evaluation reveals that this approach exhibits improved resistance to data contamination compared to existing methods, offering a promising direction for more robust NAD systems.


Robustness Evaluation of Deep Unsupervised Learning Algorithms for Intrusion Detection Systems

arXiv.org Artificial Intelligence

Recently, advances in deep learning have been observed in various fields, including computer vision, natural language processing, and cybersecurity. Machine learning (ML) has demonstrated its ability as a potential tool for anomaly detection-based intrusion detection systems to build secure computer networks. Increasingly, ML approaches are widely adopted than heuristic approaches for cybersecurity because they learn directly from data. Data is critical for the development of ML systems, and becomes potential targets for attackers. Basically, data poisoning or contamination is one of the most common techniques used to fool ML models through data. This paper evaluates the robustness of six recent deep learning algorithms for intrusion detection on contaminated data. Our experiments suggest that the state-of-the-art algorithms used in this study are sensitive to data contamination and reveal the importance of self-defense against data perturbation when developing novel models, especially for intrusion detection systems.


Characterizing Financial Market Coverage using Artificial Intelligence

arXiv.org Artificial Intelligence

This paper scrutinizes a database of over 4900 YouTube videos to characterize financial market coverage. Financial market coverage generates a large number of videos. Therefore, watching these videos to derive actionable insights could be challenging and complex. In this paper, we leverage Whisper, a speech-to-text model from OpenAI, to generate a text corpus of market coverage videos from Bloomberg and Yahoo Finance. We employ natural language processing to extract insights regarding language use from the market coverage. Moreover, we examine the prominent presence of trending topics and their evolution over time, and the impacts that some individuals and organizations have on the financial market. Our characterization highlights the dynamics of the financial market coverage and provides valuable insights reflecting broad discussions regarding recent financial events and the world economy.


Using a Recursive Neural Network to Learn an Agent's Decision Model for Plan Recognition

AAAI Conferences

Plan recognition, the problem of inferring the goals or plans of an observed agent, is a key element of situation awareness in human-machine and machine-machine interactions for many applications. Some plan recognition algorithms require knowledge about the potential behaviours of the observed agent in the form of a plan library, together with a decision model about how the observed agent uses the plan library to make decisions. It is however difficult to elicit and specify the decision model a priori . In this paper, we present a recursive neural network model that learns such a decision model automatically. We discuss promising experimental results of the approach with comparisons to selected state-of-the-art plan recognition algorithms on three benchmark domains.


An Antimicrobial Prescription Surveillance System that Learns from Experience

AI Magazine

Inappropriate prescribing of antimicrobials is a major clinical concern that affects as many as 50 percent of prescriptions. To solve this problem, we have developed and deployed an automated antimicrobial prescription surveillance system that assists hospital pharmacists in identifying and reporting inappropriate prescriptions. Since its deployment, the system has improved antimicrobial prescribing and decreased antimicrobial use. As a remedy, we are developing a machine learning algorithm that combines instance-based learning and rule induction techniques to discover new rules for detecting inappropriate prescriptions from previous false alerts.


An Antimicrobial Prescription Surveillance System that Learns from Experience

AI Magazine

Inappropriate prescribing of antimicrobials is a major clinical concern that affects as many as 50 percent of prescriptions. One of the difficulties of antimicrobial prescribing lies in the necessity to sequentially adjust the treatment of a patient as new clinical data become available. The lack of specialized healthcare resources and the overwhelming amount of information to process make manual surveillance unsustainable. To solve this problem, we have developed and deployed an automated antimicrobial prescription surveillance system that assists hospital pharmacists in identifying and reporting inappropriate prescriptions. Since its deployment, the system has improved antimicrobial prescribing and decreased antimicrobial use. However, the highly sensitive knowledge base used by the system leads to many false alerts. As a remedy, we are developing a machine learning algorithm that combines instance-based learning and rule induction techniques to discover new rules for detecting inappropriate prescriptions from previous false alerts. In this article, we describe the system, point to results and lessons learned so far and provide insight into the machine learning capability.


An Antimicrobial Prescription Surveillance System that Learns from Experience

AAAI Conferences

Inappropriate prescribing of antimicrobials is a major clinical and health concern, as well as a financial burden, in hospitals worldwide. In this paper, we describe a deployed automated antimicrobial prescription surveillance system that has been assisting hospital pharmacists in identifying and reporting inappropriate antimicrobial prescriptions. One of the key characteristics of this system is its ability to learn new rules for detecting inappropriate prescriptions based on previous false alerts. The supervised learning algorithm combines instance-based learning and rule induction techniques. It exploits temporal abstraction to extract a meaningful time interval representation from raw clinical data, and applies nearest neighbor classification with a distance function on both temporal and non-temporal parameters. The learning capability is valuable both in configuring the system for initial deployment and improving its long term use. We give an overview of the application, point to lessons learned so far and provide insight into the machine learning capability.


Anytime State-Based Solution Methods for Decision Processes with non-Markovian Rewards

arXiv.org Artificial Intelligence

A popular approach to solving a decision process with non-Markovian rewards (NMRDP) is to exploit a compact representation of the reward function to automatically translate the NMRDP into an equivalent Markov decision process (MDP) amenable to our favorite MDP solution method. The contribution of this paper is a representation of non-Markovian reward functions and a translation into MDP aimed at making the best possible use of state-based anytime algorithms as the solution method. By explicitly constructing and exploring only parts of the state space, these algorithms are able to trade computation time for policy quality, and have proven quite effective in dealing with large MDPs. Our representation extends future linear temporal logic (FLTL) to express rewards. Our translation has the effect of embedding model-checking in the solution method. It results in an MDP of the minimal size achievable without stepping outside the anytime framework, and consequently in better policies by the deadline.


Heuristic Planning in Adversarial Dynamic Domains

AAAI Conferences

Agents in highly dynamic adversarial domains, such as RTS games, must continually make time-critical decisions to adapt their behaviour to the changing environment. In such a context, the planning agent must consider his opponent's actions as uncontrollable, or at best influenceable. In general nondeterministic domains where there is no clear turn-taking protocol, most heuristic search methods to date do not explicitly reason about the opponent's actions when guiding the state space exploration towards goal or high-reward states. In contrast, we are investigating a domain-independent heuristic planning approach which reasons about the dynamics and uncontrollability of the opponent's behaviours in order to provide better guidance to the search process of the planner. Our planner takes as input the opponent's behaviours recognized by a plan recognition module and uses them to identify opponent's actions that lead to low-utility projected states. We believe such explicit heuristic reasoning about the potential behaviours of the opponent is crucial when planning in adversarial domains, yet is missing in today's planning approaches.