Junjie Yan
Synaptic Strength For Convolutional Neural Network
CHEN LIN, Zhao Zhong, Wu Wei, Junjie Yan
Convolutional Neural Networks(CNNs) are both computation and memory intensive which hindered their deployment in mobile devices. Inspired by the relevant concept in neural science literature, we propose Synaptic Pruning: a data-driven method to prune connections between input and output feature maps with a newly proposed class of parameters called Synaptic Strength. Synaptic Strength is designed to capture the importance of a connection based on the amount of information it transports. Experiment results show the effectiveness of our approach. On CIFAR-10, we prune connections for various CNN models with up to 96%, which results in significant size reduction and computation saving. Further evaluation on ImageNet demonstrates that synaptic pruning is able to discover efficient models which is competitive to state-of-the-art compact CNNs such as MobileNet-V2 and NasNet-Mobile. Our contribution is summarized as following: (1) We introduce Synaptic Strength, a new class of parameters for CNNs to indicate the importance of each connections.
Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection
Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, Junjie Yan
Recently, Neural Architecture Search has achieved great success in large-scale image classification. In contrast, there have been limited works focusing on architecture search for object detection, mainly because the costly ImageNet pretraining is always required for detectors. Training from scratch, as a substitute, demands more epochs to converge and brings no computation saving. To overcome this obstacle, we introduce a practical neural architecture transformation search(NATS) algorithm for object detection in this paper. Instead of searching and constructing an entire network, NATS explores the architecture space on the base of existing network and reusing its weights.