Jung, Tzyy-Ping
Analyzing and Visualizing Single-Trial Event-Related Potentials
Jung, Tzyy-Ping, Makeig, Scott, Westerfield, Marissa, Townsend, Jeanne, Courchesne, Eric, Sejnowski, Terrence J.
Event-related potentials (ERPs), are portions of electroencephalographic (EEG) recordings that are both time-and phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity, regardless of the fact that response activity in single epochs may vary widely in time course and scalp distribution. This study applies a linear decomposition tool, Independent Component Analysis (ICA) [1], to multichannel single-trial EEG records to derive spatial filters that decompose single-trial EEG epochs into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain networks. Our results on normal and autistic subjects show that ICA can separate artifactual, stimulus-locked, response-locked, and.
Extended ICA Removes Artifacts from Electroencephalographic Recordings
Jung, Tzyy-Ping, Humphries, Colin, Lee, Te-Won, Makeig, Scott, McKeown, Martin J., Iragui, Vicente, Sejnowski, Terrence J.
Severe contamination of electroencephalographic (EEG) activity by eye movements, blinks, muscle, heart and line noise is a serious problem for EEG interpretation and analysis. Rejecting contaminated EEG segments results in a considerable loss of information and may be impractical for clinical data. Many methods have been proposed to remove eye movement and blink artifacts from EEG recordings. Often regression in the time or frequency domain is performed on simultaneous EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. However, EOG records also contain brain signals [1, 2], so regressing out EOG activity inevitably involves subtracting a portion of the relevant EEG signal from each recording as well. Regression cannot be used to remove muscle noise or line noise, since these have no reference channels. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records. The method is based on an extended version of a previous Independent Component Analysis (lCA) algorithm [3, 4] for performing blind source separation on linear mixtures of independent source signals with either sub-Gaussian or super-Gaussian distributions. Our results show that ICA can effectively detect, separate and remove activity in EEG records from a wide variety of artifactual sources, with results comparing favorably to those obtained using regression-based methods.
Extended ICA Removes Artifacts from Electroencephalographic Recordings
Jung, Tzyy-Ping, Humphries, Colin, Lee, Te-Won, Makeig, Scott, McKeown, Martin J., Iragui, Vicente, Sejnowski, Terrence J.
Severe contamination of electroencephalographic (EEG) activity by eye movements, blinks, muscle, heart and line noise is a serious problem for EEG interpretation and analysis. Rejecting contaminated EEG segments results in a considerable loss of information and may be impractical for clinical data. Many methods have been proposed to remove eye movement and blink artifacts from EEG recordings. Often regression in the time or frequency domain is performed on simultaneous EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. However, EOG records also contain brain signals [1, 2], so regressing out EOG activity inevitably involves subtracting a portion of the relevant EEG signal from each recording as well. Regression cannot be used to remove muscle noise or line noise, since these have no reference channels. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records. The method is based on an extended version of a previous Independent Component Analysis (lCA) algorithm [3, 4] for performing blind source separation on linear mixtures of independent source signals with either sub-Gaussian or super-Gaussian distributions. Our results show that ICA can effectively detect, separate and remove activity in EEG records from a wide variety of artifactual sources, with results comparing favorably to those obtained using regression-based methods.
Independent Component Analysis of Electroencephalographic Data
Makeig, Scott, Bell, Anthony J., Jung, Tzyy-Ping, Sejnowski, Terrence J.
Because of the distance between the skull and brain and their different resistivities, electroencephalographic (EEG) data collected from any point on the human scalp includes activity generated within a large brain area. This spatial smearing of EEG data by volume conduction does not involve significant time delays, however, suggesting that the Independent Component Analysis (ICA) algorithm of Bell and Sejnowski [1] is suitable for performing blind source separation on EEG data.
Independent Component Analysis of Electroencephalographic Data
Makeig, Scott, Bell, Anthony J., Jung, Tzyy-Ping, Sejnowski, Terrence J.
Recent efforts to identify EEG sources have focused mostly on verforming spatial segregation and localization of source activity [4]. By applying the leA algorithm of Bell and Sejnowski [1], we attempt to completely separate the twin problems of source identification (What) and source localization (Where). The leA algorithm derives independent sources from highly correlated EEG signals statistically and without regard to the physical location or configuration of the source generators. Rather than modeling the EEG as a unitary output of a multidimensional dynamical system,or as "the roar of the crowd" of independent microscopic generators, we suppose that the EEG is the output of a number of statistically independent but spatially fixed potential-generating systems which may either be spatially restricted or widely distributed.
Using Feedforward Neural Networks to Monitor Alertness from Changes in EEG Correlation and Coherence
Makeig, Scott, Jung, Tzyy-Ping, Sejnowski, Terrence J.
We report here that changes in the normalized electroencephalographic (EEG)cross-spectrum can be used in conjunction with feedforward neural networks to monitor changes in alertness of operators continuouslyand in near-real time. Previously, we have shown that EEG spectral amplitudes covary with changes in alertness asindexed by changes in behavioral error rate on an auditory detection task [6,4]. Here, we report for the first time that increases in the frequency of detection errors in this task are also accompanied bypatterns of increased and decreased spectral coherence in several frequency bands and EEG channel pairs. Relationships between EEG coherence and performance vary between subjects, but within subjects, their topographic and spectral profiles appear stable from session to session. Changes in alertness also covary with changes in correlations among EEG waveforms recorded at different scalp sites, and neural networks can also estimate alertness fromcorrelation changes in spontaneous and unobtrusivelyrecorded EEGsignals. 1 Introduction When humans become drowsy, EEG scalp recordings of potential oscillations change dramatically in frequency, amplitude, and topographic distribution [3]. These changes are complex and differ between subjects [10]. Recently, we have shown 932 S.MAKEIG, T.-P.