Jung, Tzyy-Ping
Integrating LLM, EEG, and Eye-Tracking Biomarker Analysis for Word-Level Neural State Classification in Semantic Inference Reading Comprehension
Zhang, Yuhong, Li, Qin, Nahata, Sujal, Jamal, Tasnia, Cheng, Shih-kuen, Cauwenberghs, Gert, Jung, Tzyy-Ping
With the recent proliferation of large language models (LLMs), such as Generative Pre-trained Transformers (GPT), there has been a significant shift in exploring human and machine comprehension of semantic language meaning. This shift calls for interdisciplinary research that bridges cognitive science and natural language processing (NLP). This pilot study aims to provide insights into individuals' neural states during a semantic relation reading-comprehension task. We propose jointly analyzing LLMs, eye-gaze, and electroencephalographic (EEG) data to study how the brain processes words with varying degrees of relevance to a keyword during reading. We also use a feature engineering approach to improve the fixation-related EEG data classification while participants read words with high versus low relevance to the keyword. The best validation accuracy in this word-level classification is over 60\% across 12 subjects. Words of high relevance to the inference keyword had significantly more eye fixations per word: 1.0584 compared to 0.6576 when excluding no-fixation words, and 1.5126 compared to 1.4026 when including them. This study represents the first attempt to classify brain states at a word level using LLM knowledge. It provides valuable insights into human cognitive abilities and the realm of Artificial General Intelligence (AGI), and offers guidance for developing potential reading-assisted technologies.
Using EEG Signals to Assess Workload during Memory Retrieval in a Real-world Scenario
Chiang, Kuan-Jung, Dong, Steven, Cheng, Chung-Kuan, Jung, Tzyy-Ping
Objective: The Electroencephalogram (EEG) is gaining popularity as a physiological measure for neuroergonomics in human factor studies because it is objective, less prone to bias, and capable of assessing the dynamics of cognitive states. This study investigated the associations between memory workload and EEG during participants' typical office tasks on a single-monitor and dual-monitor arrangement. We expect a higher memory workload for the single-monitor arrangement. Approach: We designed an experiment that mimics the scenario of a subject performing some office work and examined whether the subjects experienced various levels of memory workload in two different office setups: 1) a single-monitor setup and 2) a dual-monitor setup. We used EEG band power, mutual information, and coherence as features to train machine learning models to classify high versus low memory workload states. Main results: The study results showed that these characteristics exhibited significant differences that were consistent across all participants. We also verified the robustness and consistency of these EEG signatures in a different data set collected during a Sternberg task in a prior study. Significance: The study found the EEG correlates of memory workload across individuals, demonstrating the effectiveness of using EEG analysis in conducting real-world neuroergonomic studies.
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
Meng, Lubin, Huang, Jian, Zeng, Zhigang, Jiang, Xue, Yu, Shan, Jung, Tzyy-Ping, Lin, Chin-Teng, Chavarriaga, Ricardo, Wu, Dongrui
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning approaches for decoding the EEG signals. However, recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks. This article proposes to use narrow period pulse for poisoning attack of EEG-based BCIs, which is implementable in practice and has never been considered before. One can create dangerous backdoors in the machine learning model by injecting poisoning samples into the training set. Test samples with the backdoor key will then be classified into the target class specified by the attacker. What most distinguishes our approach from previous ones is that the backdoor key does not need to be synchronized with the EEG trials, making it very easy to implement. The effectiveness and robustness of the backdoor attack approach is demonstrated, highlighting a critical security concern for EEG-based BCIs and calling for urgent attention to address it.
Tiny noise, big mistakes: Adversarial perturbations induce errors in Brain-Computer Interface spellers
Zhang, Xiao, Wu, Dongrui, Ding, Lieyun, Luo, Hanbin, Lin, Chin-Teng, Jung, Tzyy-Ping, Chavarriaga, Ricardo
An electroencephalogram (EEG) based brain-computer interface (BCI) speller allows a user to input text to a computer by thought. It is particularly useful to severely disabled individuals, e.g., amyotrophic lateral sclerosis patients, who have no other effective means of communication with another person or a computer. Most studies so far focused on making EEG-based BCI spellers faster and more reliable; however, few have considered their security. This study, for the first time, shows that P300 and steady-state visual evoked potential BCI spellers are very vulnerable, i.e., they can be severely attacked by adversarial perturbations, which are too tiny to be noticed when added to EEG signals, but can mislead the spellers to spell anything the attacker wants. The consequence could range from merely user frustration to severe misdiagnosis in clinical applications. We hope our research can attract more attention to the security of EEG-based BCI spellers, and more broadly, EEG-based BCIs, which has received little attention before.
Utilizing Deep Learning Towards Multi-modal Bio-sensing and Vision-based Affective Computing
Siddharth, Siddharth, Jung, Tzyy-Ping, Sejnowski, Terrence J.
In recent years, the use of bio-sensing signals such as electroencephalogram (EEG), electrocardiogram (ECG), etc. have garnered interest towards applications in affective computing. The parallel trend of deep-learning has led to a huge leap in performance towards solving various vision-based research problems such as object detection. Yet, these advances in deep-learning have not adequately translated into bio-sensing research. This work applies novel deep-learning-based methods to various bio-sensing and video data of four publicly available multi-modal emotion datasets. For each dataset, we first individually evaluate the emotion-classification performance obtained by each modality. We then evaluate the performance obtained by fusing the features from these modalities. We show that our algorithms outperform the results reported by other studies for emotion/valence/arousal/liking classification on DEAP and MAHNOB-HCI datasets and set up benchmarks for the newer AMIGOS and DREAMER datasets. We also evaluate the performance of our algorithms by combining the datasets and by using transfer learning to show that the proposed method overcomes the inconsistencies between the datasets. Hence, we do a thorough analysis of multi-modal affective data from more than 120 subjects and 2,800 trials. Finally, utilizing a convolution-deconvolution network, we propose a new technique towards identifying salient brain regions corresponding to various affective states.
Spatiotemporal Sparse Bayesian Learning with Applications to Compressed Sensing of Multichannel Physiological Signals
Zhang, Zhilin, Jung, Tzyy-Ping, Makeig, Scott, Pi, Zhouyue, Rao, Bhaskar D.
Energy consumption is an important issue in continuous wireless telemonitoring of physiological signals. Compressed sensing (CS) is a promising framework to address it, due to its energy-efficient data compression procedure. However, most CS algorithms have difficulty in data recovery due to non-sparsity characteristic of many physiological signals. Block sparse Bayesian learning (BSBL) is an effective approach to recover such signals with satisfactory recovery quality. However, it is time-consuming in recovering multichannel signals, since its computational load almost linearly increases with the number of channels. This work proposes a spatiotemporal sparse Bayesian learning algorithm to recover multichannel signals simultaneously. It not only exploits temporal correlation within each channel signal, but also exploits inter-channel correlation among different channel signals. Furthermore, its computational load is not significantly affected by the number of channels. The proposed algorithm was applied to brain computer interface (BCI) and EEG-based driver's drowsiness estimation. Results showed that the algorithm had both better recovery performance and much higher speed than BSBL. Particularly, the proposed algorithm ensured that the BCI classification and the drowsiness estimation had little degradation even when data were compressed by 80%, making it very suitable for continuous wireless telemonitoring of multichannel signals.
Compressed Sensing of EEG for Wireless Telemonitoring with Low Energy Consumption and Inexpensive Hardware
Zhang, Zhilin, Jung, Tzyy-Ping, Makeig, Scott, Rao, Bhaskar D.
Telemonitoring of electroencephalogram (EEG) through wireless body-area networks is an evolving direction in personalized medicine. Among various constraints in designing such a system, three important constraints are energy consumption, data compression, and device cost. Conventional data compression methodologies, although effective in data compression, consumes significant energy and cannot reduce device cost. Compressed sensing (CS), as an emerging data compression methodology, is promising in catering to these constraints. However, EEG is non-sparse in the time domain and also non-sparse in transformed domains (such as the wavelet domain). Therefore, it is extremely difficult for current CS algorithms to recover EEG with the quality that satisfies the requirements of clinical diagnosis and engineering applications. Recently, Block Sparse Bayesian Learning (BSBL) was proposed as a new method to the CS problem. This study introduces the technique to the telemonitoring of EEG. Experimental results show that its recovery quality is better than state-of-the-art CS algorithms, and sufficient for practical use. These results suggest that BSBL is very promising for telemonitoring of EEG and other non-sparse physiological signals.
Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG via Block Sparse Bayesian Learning
Zhang, Zhilin, Jung, Tzyy-Ping, Makeig, Scott, Rao, Bhaskar D.
Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body-area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. This work proposes to use the block sparse Bayesian learning (BSBL) framework to compress/reconstruct non-sparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.
Compressed Sensing for Energy-Efficient Wireless Telemonitoring: Challenges and Opportunities
Zhang, Zhilin, Rao, Bhaskar D., Jung, Tzyy-Ping
As a lossy compression framework, compressed sensing has drawn much attention in wireless telemonitoring of biosignals due to its ability to reduce energy consumption and make possible the design of low-power devices. However, the non-sparseness of biosignals presents a major challenge to compressed sensing. This study proposes and evaluates a spatio-temporal sparse Bayesian learning algorithm, which has the desired ability to recover such non-sparse biosignals. It exploits both temporal correlation in each individual biosignal and inter-channel correlation among biosignals from different channels. The proposed algorithm was used for compressed sensing of multichannel electroencephalographic (EEG) signals for estimating vehicle drivers' drowsiness. Results showed that the drowsiness estimation was almost unaffected even if raw EEG signals (containing various artifacts) were compressed by 90%.
Analyzing and Visualizing Single-Trial Event-Related Potentials
Jung, Tzyy-Ping, Makeig, Scott, Westerfield, Marissa, Townsend, Jeanne, Courchesne, Eric, Sejnowski, Terrence J.
Event-related potentials (ERPs), are portions of electroencephalographic (EEG)recordings that are both time-and phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity, regardlessof the fact that response activity in single epochs may vary widely in time course and scalp distribution. This study applies a linear decomposition tool, Independent Component Analysis (ICA)[1], to multichannel single-trial EEG records to derive spatial filters that decompose single-trial EEG epochs into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain networks. Our results on normal and autistic subjects show that ICA can separate artifactual,stimulus-locked, response-locked, and.