Goto

Collaborating Authors

 Jung, Jee-weon


SpoofCeleb: Speech Deepfake Detection and SASV In The Wild

arXiv.org Artificial Intelligence

This paper introduces SpoofCeleb, a dataset designed for Speech Deepfake Detection (SDD) and Spoofing-robust Automatic Speaker Verification (SASV), utilizing source data from real-world conditions and spoofing attacks generated by Text-To-Speech (TTS) systems also trained on the same real-world data. Robust recognition systems require speech data recorded in varied acoustic environments with different levels of noise to be trained. However, existing datasets typically include clean, high-quality recordings (bona fide data) due to the requirements for TTS training; studio-quality or well-recorded read speech is typically necessary to train TTS models. Existing SDD datasets also have limited usefulness for training SASV models due to insufficient speaker diversity. We present SpoofCeleb, which leverages a fully automated pipeline that processes the VoxCeleb1 dataset, transforming it into a suitable form for TTS training. We subsequently train 23 contemporary TTS systems. The resulting SpoofCeleb dataset comprises over 2.5 million utterances from 1,251 unique speakers, collected under natural, real-world conditions. The dataset includes carefully partitioned training, validation, and evaluation sets with well-controlled experimental protocols. We provide baseline results for both SDD and SASV tasks. All data, protocols, and baselines are publicly available at https://jungjee.github.io/spoofceleb.


The VoxCeleb Speaker Recognition Challenge: A Retrospective

arXiv.org Artificial Intelligence

The VoxCeleb Speaker Recognition Challenges (VoxSRC) were a series of challenges and workshops that ran annually from 2019 to 2023. The challenges primarily evaluated the tasks of speaker recognition and diarisation under various settings including: closed and open training data; as well as supervised, self-supervised, and semi-supervised training for domain adaptation. The challenges also provided publicly available training and evaluation datasets for each task and setting, with new test sets released each year. In this paper, we provide a review of these challenges that covers: what they explored; the methods developed by the challenge participants and how these evolved; and also the current state of the field for speaker verification and diarisation. We chart the progress in performance over the five installments of the challenge on a common evaluation dataset and provide a detailed analysis of how each year's special focus affected participants' performance. This paper is aimed both at researchers who want an overview of the speaker recognition and diarisation field, and also at challenge organisers who want to benefit from the successes and avoid the mistakes of the VoxSRC challenges. We end with a discussion of the current strengths of the field and open challenges. Project page : https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/workshop.html


Beyond Silence: Bias Analysis through Loss and Asymmetric Approach in Audio Anti-Spoofing

arXiv.org Artificial Intelligence

Current trends in audio anti-spoofing detection research strive to improve models' ability to generalize across unseen attacks by learning to identify a variety of spoofing artifacts. This emphasis has primarily focused on the spoof class. Recently, several studies have noted that the distribution of silence differs between the two classes, which can serve as a shortcut. In this paper, we extend class-wise interpretations beyond silence. We employ loss analysis and asymmetric methodologies to move away from traditional attack-focused and result-oriented evaluations towards a deeper examination of model behaviors. Our investigations highlight the significant differences in training dynamics between the two classes, emphasizing the need for future research to focus on robust modeling of the bonafide class.


On the Evaluation of Speech Foundation Models for Spoken Language Understanding

arXiv.org Artificial Intelligence

The Spoken Language Understanding Evaluation (SLUE) suite of benchmark tasks was recently introduced to address the need for open resources and benchmarking of complex spoken language understanding (SLU) tasks, including both classification and sequence generation tasks, on natural speech. The benchmark has demonstrated preliminary success in using pre-trained speech foundation models (SFM) for these SLU tasks. However, the community still lacks a fine-grained understanding of the comparative utility of different SFMs. Inspired by this, we ask: which SFMs offer the most benefits for these complex SLU tasks, and what is the most effective approach for incorporating these SFMs? To answer this, we perform an extensive evaluation of multiple supervised and self-supervised SFMs using several evaluation protocols: (i) frozen SFMs with a lightweight prediction head, (ii) frozen SFMs with a complex prediction head, and (iii) fine-tuned SFMs with a lightweight prediction head. Although the supervised SFMs are pre-trained on much more speech recognition data (with labels), they do not always outperform self-supervised SFMs; the latter tend to perform at least as well as, and sometimes better than, supervised SFMs, especially on the sequence generation tasks in SLUE. While there is no universally optimal way of incorporating SFMs, the complex prediction head gives the best performance for most tasks, although it increases the inference time. We also introduce an open-source toolkit and performance leaderboard, SLUE-PERB, for these tasks and modeling strategies.


To what extent can ASV systems naturally defend against spoofing attacks?

arXiv.org Artificial Intelligence

The current automatic speaker verification (ASV) task involves making binary decisions on two types of trials: target and nontarget. However, emerging advancements in speech generation technology pose significant threats to the reliability of ASV systems. This study investigates whether ASV effortlessly acquires robustness against spoofing attacks (i.e., zero-shot capability) by systematically exploring diverse ASV systems and spoofing attacks, ranging from traditional to cutting-edge techniques. Through extensive analyses conducted on eight distinct ASV systems and 29 spoofing attack systems, we demonstrate that the evolution of ASV inherently incorporates defense mechanisms Figure 1: Average Spoof Equal Error Rates (SPF-EERs) on 29 against spoofing attacks. Nevertheless, our findings also different spoofing attacks, chronologically displayed using eight underscore that the advancement of spoofing attacks far outpaces automatic speaker verification (ASV) systems. The SPF-EER that of ASV systems, hence necessitating further research adopts spoof trials in place of conventional non-target trials, on spoofing-robust ASV methodologies.


a-DCF: an architecture agnostic metric with application to spoofing-robust speaker verification

arXiv.org Artificial Intelligence

The tandem approach is characteristic of Standard metrics can be applied to evaluate the performance of the majority of related work, including studies involving other isolated spoofing detection solutions and others have been proposed biometric traits [10, 11]. to support their evaluation when they are combined with Standard metrics developed for the evaluation of speaker speaker detection. These either have well-known deficiencies or detectors can also be applied to the evaluation of spoof detectors, restrict the architectural approach to combine speaker and spoof also known as countermeasures (CMs); they are both binary detectors. In this paper, we propose an architecture-agnostic classifiers. Alternative metrics proposed in recent years also detection cost function (a-DCF). A generalisation of the original support the evaluation of speaker and spoof detectors when DCF used widely for the assessment of automatic speaker combined [12, 13]. While the combination of speaker and spoof verification (ASV), the a-DCF is designed for the evaluation detectors still constitutes a single, binary classifier with the very of spoofing-robust ASV. Like the DCF, the a-DCF reflects the same original task of accepting bonafide target trials and rejecting cost of decisions in a Bayes risk sense, with explicitly defined anything else, the consideration of spoofing complicates class priors and detection cost model.


TMT: Tri-Modal Translation between Speech, Image, and Text by Processing Different Modalities as Different Languages

arXiv.org Artificial Intelligence

The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.


ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models

arXiv.org Artificial Intelligence

This paper introduces ESPnet-SPK, a toolkit designed with several objectives for training speaker embedding extractors. First, we provide an open-source platform for researchers in the speaker recognition community to effortlessly build models. We provide several models, ranging from x-vector to recent SKA-TDNN. Through the modularized architecture design, variants can be developed easily. We also aspire to bridge developed models with other domains, facilitating the broad research community to effortlessly incorporate state-of-the-art embedding extractors. Pre-trained embedding extractors can be accessed in an off-the-shelf manner and we demonstrate the toolkit's versatility by showcasing its integration with two tasks. Another goal is to integrate with diverse self-supervised learning features. We release a reproducible recipe that achieves an equal error rate of 0.39% on the Vox1-O evaluation protocol using WavLM-Large with ECAPA-TDNN.


OWSM v3.1: Better and Faster Open Whisper-Style Speech Models based on E-Branchformer

arXiv.org Artificial Intelligence

Recent studies have advocated for fully open foundation models to promote transparency and open science. As an initial step, the Open Whisper-style Speech Model (OWSM) reproduced OpenAI's Whisper using publicly available data and open-source toolkits. With the aim of reproducing Whisper, the previous OWSM v1 through v3 models were still based on Transformer, which might lead to inferior performance compared to other state-of-the-art speech encoders. In this work, we aim to improve the performance and efficiency of OWSM without extra training data. We present E-Branchformer based OWSM v3.1 models at two scales, i.e., 100M and 1B. The 1B model is the largest E-Branchformer based speech model that has been made publicly available. It outperforms the previous OWSM v3 in a vast majority of evaluation benchmarks, while demonstrating up to 25% faster inference speed. We publicly release the data preparation scripts, pre-trained models and training logs.


Voxtlm: unified decoder-only models for consolidating speech recognition/synthesis and speech/text continuation tasks

arXiv.org Artificial Intelligence

We propose a decoder-only language model, VoxtLM, that can perform four tasks: speech recognition, speech synthesis, text generation, and speech continuation. VoxtLM integrates text vocabulary with discrete speech tokens from self-supervised speech features and uses special tokens to enable multitask learning. Compared to a single-task model, VoxtLM exhibits a significant improvement in speech synthesis, with improvements in both speech intelligibility from 28.9 to 5.6 and objective quality from 2.68 to 3.90. VoxtLM also improves speech generation and speech recognition performance over the single-task counterpart. Further, VoxtLM is trained with publicly available data and training recipes and model checkpoints are open-sourced to make fully reproducible work.