Well File:

 Jun Zhu


Structured Generative Adversarial Networks

Neural Information Processing Systems

We study the problem of conditional generative modeling based on designated semantics or structures. Existing models that build conditional generators either require massive labeled instances as supervision or are unable to accurately control the semantics of generated samples. We propose structured generative adversarial networks (SGANs) for semi-supervised conditional generative modeling. SGAN assumes the data x is generated conditioned on two independent latent variables: y that encodes the designated semantics, and z that contains other factors of variation. To ensure disentangled semantics in y and z, SGAN builds two collaborative games in the hidden space to minimize the reconstruction error of y and z, respectively. Training SGAN also involves solving two adversarial games that have their equilibrium concentrating at the true joint data distributions p(x, z) and p(x, y), avoiding distributing the probability mass diffusely over data space that MLE-based methods may suffer. We assess SGAN by evaluating its trained networks, and its performance on downstream tasks. We show that SGAN delivers a highly controllable generator, and disentangled representations; it also establishes start-of-the-art results across multiple datasets when applied for semi-supervised image classification (1.27%, 5.73%, 17.26% error rates on MNIST, SVHN and CIFAR-10 using 50, 1000 and 4000 labels, respectively). Benefiting from the separate modeling of y and z, SGAN can generate images with high visual quality and strictly following the designated semantic, and can be extended to a wide spectrum of applications, such as style transfer.


Triple Generative Adversarial Nets

Neural Information Processing Systems

Generative Adversarial Nets (GANs) have shown promise in image generation and semi-supervised learning (SSL). However, existing GANs in SSL have two problems: (1) the generator and the discriminator (i.e. the classifier) may not be optimal at the same time; and (2) the generator cannot control the semantics of the generated samples. The problems essentially arise from the two-player formulation, where a single discriminator shares incompatible roles of identifying fake samples and predicting labels and it only estimates the data without considering the labels. To address the problems, we present triple generative adversarial net (Triple-GAN), which consists of three players--a generator, a discriminator and a classifier. The generator and the classifier characterize the conditional distributions between images and labels, and the discriminator solely focuses on identifying fake image-label pairs. We design compatible utilities to ensure that the distributions characterized by the classifier and the generator both converge to the data distribution. Our results on various datasets demonstrate that Triple-GAN as a unified model can simultaneously (1) achieve the state-of-the-art classification results among deep generative models, and (2) disentangle the classes and styles of the input and transfer smoothly in the data space via interpolation in the latent space class-conditionally.




Towards Robust Detection of Adversarial Examples

Neural Information Processing Systems

Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of adversarial examples. In training, we propose to minimize the reverse crossentropy (RCE), which encourages a deep network to learn latent representations that better distinguish adversarial examples from normal ones. In testing, we propose to use a thresholding strategy as the detector to filter out adversarial examples for reliable predictions. Our method is simple to implement using standard algorithms, with little extra training cost compared to the common cross-entropy minimization. We apply our method to defend various attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve significant improvements on robust predictions under all the threat models in the adversarial setting.




Generative Well-intentioned Networks

Neural Information Processing Systems

We propose Generative Well-intentioned Networks (GWINs), a novel framework for increasing the accuracy of certainty-based, closed-world classifiers. A conditional generative network recovers the distribution of observations that the classifier labels correctly with high certainty. We introduce a reject option to the classifier during inference, allowing the classifier to reject an observation instance rather than predict an uncertain label. These rejected observations are translated by the generative network to high-certainty representations, which are then relabeled by the classifier. This architecture allows for any certainty-based classifier or rejection function and is not limited to multilayer perceptrons. The capability of this framework is assessed using benchmark classification datasets and shows that GWINs significantly improve the accuracy of uncertain observations.



Max-Margin Deep Generative Models

Neural Information Processing Systems

Deep generative models (DGMs) are effective on learning multilayered representations of complex data and performing inference of input data by exploring the generative ability. However, little work has been done on examining or empowering the discriminative ability of DGMs on making accurate predictions. This paper presents max-margin deep generative models (mmDGMs), which explore the strongly discriminative principle of max-margin learning to improve the discriminative power of DGMs, while retaining the generative capability. We develop an efficient doubly stochastic subgradient algorithm for the piecewise linear objective. Empirical results on MNIST and SVHN datasets demonstrate that (1) maxmargin learning can significantly improve the prediction performance of DGMs and meanwhile retain the generative ability; and (2) mmDGMs are competitive to the state-of-the-art fully discriminative networks by employing deep convolutional neural networks (CNNs) as both recognition and generative models.