Jun Zhu
Towards Robust Detection of Adversarial Examples
Tianyu Pang, Chao Du, Yinpeng Dong, Jun Zhu
Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of adversarial examples. In training, we propose to minimize the reverse crossentropy (RCE), which encourages a deep network to learn latent representations that better distinguish adversarial examples from normal ones. In testing, we propose to use a thresholding strategy as the detector to filter out adversarial examples for reliable predictions. Our method is simple to implement using standard algorithms, with little extra training cost compared to the common cross-entropy minimization. We apply our method to defend various attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve significant improvements on robust predictions under all the threat models in the adversarial setting.
Generative Well-intentioned Networks
Justin Cosentino, Jun Zhu
We propose Generative Well-intentioned Networks (GWINs), a novel framework for increasing the accuracy of certainty-based, closed-world classifiers. A conditional generative network recovers the distribution of observations that the classifier labels correctly with high certainty. We introduce a reject option to the classifier during inference, allowing the classifier to reject an observation instance rather than predict an uncertain label. These rejected observations are translated by the generative network to high-certainty representations, which are then relabeled by the classifier. This architecture allows for any certainty-based classifier or rejection function and is not limited to multilayer perceptrons. The capability of this framework is assessed using benchmark classification datasets and shows that GWINs significantly improve the accuracy of uncertain observations.
Max-Margin Deep Generative Models
Chongxuan Li, Jun Zhu, Tianlin Shi, Bo Zhang
Deep generative models (DGMs) are effective on learning multilayered representations of complex data and performing inference of input data by exploring the generative ability. However, little work has been done on examining or empowering the discriminative ability of DGMs on making accurate predictions. This paper presents max-margin deep generative models (mmDGMs), which explore the strongly discriminative principle of max-margin learning to improve the discriminative power of DGMs, while retaining the generative capability. We develop an efficient doubly stochastic subgradient algorithm for the piecewise linear objective. Empirical results on MNIST and SVHN datasets demonstrate that (1) maxmargin learning can significantly improve the prediction performance of DGMs and meanwhile retain the generative ability; and (2) mmDGMs are competitive to the state-of-the-art fully discriminative networks by employing deep convolutional neural networks (CNNs) as both recognition and generative models.
Multi-objects Generation with Amortized Structural Regularization
Taufik Xu, Chongxuan LI, Jun Zhu, Bo Zhang
Deep generative models (DGMs) have shown promise in image generation. However, most of the existing methods learn a model by simply optimizing a divergence between the marginal distributions of the model and the data, and often fail to capture rich structures, such as attributes of objects and their relationships, in an image. Human knowledge is a crucial element to the success of DGMs to infer these structures, especially in unsupervised learning. In this paper, we propose amortized structural regularization (ASR), which adopts posterior regularization (PR) to embed human knowledge into DGMs via a set of structural constraints. We derive a lower bound of the regularized log-likelihood in PR and adopt the amortized inference technique to jointly optimize the generative model and an auxiliary recognition model for inference efficiently. Empirical results show that ASR outperforms the DGM baselines in terms of inference performance and sample quality.
Generative Well-intentioned Networks
Justin Cosentino, Jun Zhu
We propose Generative Well-intentioned Networks (GWINs), a novel framework for increasing the accuracy of certainty-based, closed-world classifiers. A conditional generative network recovers the distribution of observations that the classifier labels correctly with high certainty. We introduce a reject option to the classifier during inference, allowing the classifier to reject an observation instance rather than predict an uncertain label. These rejected observations are translated by the generative network to high-certainty representations, which are then relabeled by the classifier. This architecture allows for any certainty-based classifier or rejection function and is not limited to multilayer perceptrons. The capability of this framework is assessed using benchmark classification datasets and shows that GWINs significantly improve the accuracy of uncertain observations.
Improving Black-box Adversarial Attacks with a Transfer-based Prior
Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu
We consider the black-box adversarial setting, where the adversary has to generate adversarial perturbations without access to the target models to compute gradients. Previous methods tried to approximate the gradient either by using a transfer gradient of a surrogate white-box model, or based on the query feedback. However, these methods often suffer from low attack success rates or poor query efficiency since it is non-trivial to estimate the gradient in a high-dimensional space with limited information. To address these problems, we propose a prior-guided random gradient-free (P-RGF) method to improve black-box adversarial attacks, which takes the advantage of a transfer-based prior and the query information simultaneously. The transfer-based prior given by the gradient of a surrogate model is appropriately integrated into our algorithm by an optimal coefficient derived by a theoretical analysis. Extensive experiments demonstrate that our method requires much fewer queries to attack black-box models with higher success rates compared with the alternative state-of-the-art methods.
Kernel Bayesian Inference with Posterior Regularization
We propose a vector-valued regression problem whose solution is equivalent to the reproducing kernel Hilbert space (RKHS) embedding of the Bayesian posterior distribution. This equivalence provides a new understanding of kernel Bayesian inference. Moreover, the optimization problem induces a new regularization for the posterior embedding estimator, which is faster and has comparable performance to the squared regularization in kernel Bayes' rule. This regularization coincides with a former thresholding approach used in kernel POMDPs whose consistency remains to be established. Our theoretical work solves this open problem and provides consistency analysis in regression settings. Based on our optimizational formulation, we propose a flexible Bayesian posterior regularization framework which for the first time enables us to put regularization at the distribution level. We apply this method to nonparametric state-space filtering tasks with extremely nonlinear dynamics and show performance gains over all other baselines.