Goto

Collaborating Authors

 Jun, Gyuchan Thomas


Temporal Patterns of Multiple Long-Term Conditions in Individuals with Intellectual Disability Living in Wales: An Unsupervised Clustering Approach to Disease Trajectories

arXiv.org Artificial Intelligence

Identifying and understanding the co-occurrence of multiple long-term conditions (MLTC) in individuals with intellectual disabilities (ID) is vital for effective healthcare management. These individuals often face earlier onset and higher prevalence of MLTCs, yet specific co-occurrence patterns remain unexplored. This study applies an unsupervised approach to characterise MLTC clusters based on shared disease trajectories using electronic health records (EHRs) from 13069 individuals with ID in Wales (2000-2021). Disease associations and temporal directionality were assessed, followed by spectral clustering to group shared trajectories. The population consisted of 52.3% males and 47.7% females, with an average of 4.5 conditions per patient. Males under 45 formed a single cluster dominated by neurological conditions (32.4%), while males above 45 had three clusters, the largest characterised circulatory (51.8%). Females under 45 formed one cluster with digestive conditions (24.6%) as most prevalent, while those aged 45 and older showed two clusters: one dominated by circulatory (34.1%), and the other by digestive (25.9%) and musculoskeletal (21.9%) system conditions. Mental illness, epilepsy, and reflux were common across groups. These clusters offer insights into disease progression in individuals with ID, informing targeted interventions and personalised healthcare strategies.


Equitable Length of Stay Prediction for Patients with Learning Disabilities and Multiple Long-term Conditions Using Machine Learning

arXiv.org Artificial Intelligence

People with learning disabilities have a higher mortality rate and premature deaths compared to the general public, as reported in published research in the UK and other countries. This study analyses hospitalisations of 9,618 patients identified with learning disabilities and long-term conditions for the population of Wales using electronic health record (EHR) data sources from the SAIL Databank. We describe the demographic characteristics, prevalence of long-term conditions, medication history, hospital visits, and lifestyle history for our study cohort, and apply machine learning models to predict the length of hospital stays for this cohort. The random forest (RF) model achieved an Area Under the Curve (AUC) of 0.759 (males) and 0.756 (females), a false negative rate of 0.224 (males) and 0.229 (females), and a balanced accuracy of 0.690 (males) and 0.689 (females). After examining model performance across ethnic groups, two bias mitigation algorithms (threshold optimization and the reductions algorithm using an exponentiated gradient) were applied to minimise performance discrepancies. The threshold optimizer algorithm outperformed the reductions algorithm, achieving lower ranges in false positive rate and balanced accuracy for the male cohort across the ethnic groups. This study demonstrates the potential of applying machine learning models with effective bias mitigation approaches on EHR data sources to enable equitable prediction of hospital stays by addressing data imbalances across groups.


Unveiling Disparities in Maternity Care: A Topic Modelling Approach to Analysing Maternity Incident Investigation Reports

arXiv.org Artificial Intelligence

This study applies Natural Language Processing techniques, including Latent Dirichlet Allocation, to analyse anonymised maternity incident investigation reports from the Healthcare Safety Investigation Branch. The reports underwent preprocessing, annotation using the Safety Intelligence Research taxonomy, and topic modelling to uncover prevalent topics and detect differences in maternity care across ethnic groups. A combination of offline and online methods was utilised to ensure data protection whilst enabling advanced analysis, with offline processing for sensitive data and online processing for non-sensitive data using the `Claude 3 Opus' language model. Interactive topic analysis and semantic network visualisation were employed to extract and display thematic topics and visualise semantic relationships among keywords. The analysis revealed disparities in care among different ethnic groups, with distinct focus areas for the Black, Asian, and White British ethnic groups. The study demonstrates the effectiveness of topic modelling and NLP techniques in analysing maternity incident investigation reports and highlighting disparities in care. The findings emphasise the crucial role of advanced data analysis in improving maternity care quality and equity.


Intelligent Multi-Document Summarisation for Extracting Insights on Racial Inequalities from Maternity Incident Investigation Reports

arXiv.org Artificial Intelligence

In healthcare, thousands of safety incidents occur every year, but learning from these incidents is not effectively aggregated. Analysing incident reports using AI could uncover critical insights to prevent harm by identifying recurring patterns and contributing factors. To aggregate and extract valuable information, natural language processing (NLP) and machine learning techniques can be employed to summarise and mine unstructured data, potentially surfacing systemic issues and priority areas for improvement. This paper presents I-SIRch:CS, a framework designed to facilitate the aggregation and analysis of safety incident reports while ensuring traceability throughout the process. The framework integrates concept annotation using the Safety Intelligence Research (SIRch) taxonomy with clustering, summarisation, and analysis capabilities. Utilising a dataset of 188 anonymised maternity investigation reports annotated with 27 SIRch human factors concepts, I-SIRch:CS groups the annotated sentences into clusters using sentence embeddings and k-means clustering, maintaining traceability via file and sentence IDs. Summaries are generated for each cluster using offline state-of-the-art abstractive summarisation models (BART, DistilBART, T5), which are evaluated and compared using metrics assessing summary quality attributes. The generated summaries are linked back to the original file and sentence IDs, ensuring traceability and allowing for verification of the summarised information. Results demonstrate BART's strengths in creating informative and concise summaries.


I-SIRch: AI-Powered Concept Annotation Tool For Equitable Extraction And Analysis Of Safety Insights From Maternity Investigations

arXiv.org Artificial Intelligence

Maternity care is a complex system involving treatments and interactions between patients, providers, and the care environment. To improve patient safety and outcomes, understanding the human factors (e.g. individuals decisions, local facilities) influencing healthcare delivery is crucial. However, most current tools for analysing healthcare data focus only on biomedical concepts (e.g. health conditions, procedures and tests), overlooking the importance of human factors. We developed a new approach called I-SIRch, using artificial intelligence to automatically identify and label human factors concepts in maternity healthcare investigation reports describing adverse maternity incidents produced by England's Healthcare Safety Investigation Branch (HSIB). These incident investigation reports aim to identify opportunities for learning and improving maternal safety across the entire healthcare system. I-SIRch was trained using real data and tested on both real and simulated data to evaluate its performance in identifying human factors concepts. When applied to real reports, the model achieved a high level of accuracy, correctly identifying relevant concepts in 90\% of the sentences from 97 reports. Applying I-SIRch to analyse these reports revealed that certain human factors disproportionately affected mothers from different ethnic groups. Our work demonstrates the potential of using automated tools to identify human factors concepts in maternity incident investigation reports, rather than focusing solely on biomedical concepts. This approach opens up new possibilities for understanding the complex interplay between social, technical, and organisational factors influencing maternal safety and population health outcomes. By taking a more comprehensive view of maternal healthcare delivery, we can develop targeted interventions to address disparities and improve maternal outcomes.