Goto

Collaborating Authors

 Ju, Qi


Preference-CFR$\:$ Beyond Nash Equilibrium for Better Game Strategies

arXiv.org Artificial Intelligence

Recent advancements in artificial intelligence (AI) have leveraged large-scale games as benchmarks to gauge progress, with AI now frequently outperforming human capabilities. Traditionally, this success has largely relied on solving Nash equilibrium (NE) using variations of the counterfactual regret minimization (CFR) method in games with incomplete information. However, the variety of Nash equilibria has been largely overlooked in previous research, limiting the adaptability of AI to meet diverse human preferences. To address this challenge, where AI is powerful but struggles to meet customization needs, we introduce a novel approach: Preference-CFR, which incorporates two new parameters: preference degree and vulnerability degree. These parameters allow for greater flexibility in AI strategy development without compromising convergence. Our method significantly alters the distribution of final strategies, enabling the creation of customized AI models that better align with individual user needs. Using Texas Hold'em as a case study, our experiments demonstrate how Preference CFR can be adjusted to either emphasize customization, prioritizing user preferences, or to enhance performance, striking a balance between the depth of customization and strategic optimality.


Recouple Event Field via Probabilistic Bias for Event Extraction

arXiv.org Artificial Intelligence

Event Extraction (EE), aiming to identify and classify event triggers and arguments from event mentions, has benefited from pre-trained language models (PLMs). However, existing PLM-based methods ignore the information of trigger/argument fields, which is crucial for understanding event schemas. To this end, we propose a Probabilistic reCoupling model enhanced Event extraction framework (ProCE). Specifically, we first model the syntactic-related event fields as probabilistic biases, to clarify the event fields from ambiguous entanglement. Furthermore, considering multiple occurrences of the same triggers/arguments in EE, we explore probabilistic interaction strategies among multiple fields of the same triggers/arguments, to recouple the corresponding clarified distributions and capture more latent information fields. Experiments on EE datasets demonstrate the effectiveness and generalization of our proposed approach.