Joshi, Girish
Adaptive Policy Transfer in Reinforcement Learning
Joshi, Girish, Chowdhary, Girish
Efficient and robust policy transfer remains a key challenge for reinforcement learning to become viable for real-wold robotics. Policy transfer through warm initialization, imitation, or interacting over a large set of agents with randomized instances, have been commonly applied to solve a variety of Reinforcement Learning tasks. However, this seems far from how skill transfer happens in the biological world: Humans and animals are able to quickly adapt the learned behaviors between similar tasks and learn new skills when presented with new situations. Here we seek to answer the question: Will learning to combine adaptation and exploration lead to a more efficient transfer of policies between domains? We introduce a principled mechanism that can "Adapt-to-Learn", that is adapt the source policy to learn to solve a target task with significant transition differences and uncertainties. We show that the presented method learns to seamlessly combine learning from adaptation and exploration and leads to a robust policy transfer algorithm with significantly reduced sample complexity in transferring skills between related tasks.
Cross-Domain Transfer in Reinforcement Learning using Target Apprentice
Joshi, Girish, Chowdhary, Girish
In this paper, we present a new approach to Transfer Learning (TL) in Reinforcement Learning (RL) for cross-domain tasks. Many of the available techniques approach the transfer architecture as a method of speeding up the target task learning. We propose to adapt and reuse the mapped source task optimal-policy directly in related domains. We show the optimal policy from a related source task can be near optimal in target domain provided an adaptive policy accounts for the model error between target and source. The main benefit of this policy augmentation is generalizing policies across multiple related domains without having to re-learn the new tasks. Our results show that this architecture leads to better sample efficiency in the transfer, reducing sample complexity of target task learning to target apprentice learning.