Joshi, Dhiraj
Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence
Granite Vision Team, null, Karlinsky, Leonid, Arbelle, Assaf, Daniels, Abraham, Nassar, Ahmed, Alfassi, Amit, Wu, Bo, Schwartz, Eli, Joshi, Dhiraj, Kondic, Jovana, Shabtay, Nimrod, Li, Pengyuan, Herzig, Roei, Abedin, Shafiq, Perek, Shaked, Harary, Sivan, Barzelay, Udi, Goldfarb, Adi Raz, Oliva, Aude, Wieles, Ben, Bhattacharjee, Bishwaranjan, Huang, Brandon, Auer, Christoph, Gutfreund, Dan, Beymer, David, Wood, David, Kuehne, Hilde, Hansen, Jacob, Shtok, Joseph, Wong, Ken, Bathen, Luis Angel, Mishra, Mayank, Lysak, Maksym, Dolfi, Michele, Yurochkin, Mikhail, Livathinos, Nikolaos, Harel, Nimrod, Azulai, Ophir, Naparstek, Oshri, de Lima, Rafael Teixeira, Panda, Rameswar, Doveh, Sivan, Gupta, Shubham, Das, Subhro, Zawad, Syed, Kim, Yusik, He, Zexue, Brooks, Alexander, Goodhart, Gabe, Govindjee, Anita, Leist, Derek, Ibrahim, Ibrahim, Soffer, Aya, Cox, David, Soule, Kate, Lastras, Luis, Desai, Nirmit, Ofek-koifman, Shila, Raghavan, Sriram, Syeda-Mahmood, Tanveer, Staar, Peter, Drory, Tal, Feris, Rogerio
Ensuring the safety of generative MLLMs is absolutely crucial in order to prevent harm, build trust, address ethical concerns, and enable their responsible deployment in real-world applications. Our results demonstrate that Granite Vision performs almost at par with baselines (despite being the lightest MLLM in the comparison pool) for VLM-as-a-Judge task. Notably, the addition of Safety Vectors to Granite Vision leads to a significant improvement in safety classification performance. We do acknowledge that further work needs to be done to improve high-level reasoning and correct occasional incorrect outputs to improve reliability in sensitive tasks, which require nuanced classification. To address these, we will incorporate more reasoning-focused and structure-related data into the training process in the future. In addition, we showed in this paper that finding safety vectors (SVs) in Granite Vision's attention heads led to significant improvements when safety tasks were reformulated as classification problems. Current reliance for SVs is on few-shot samples which are informative but may have limited scope in terms of capturing the range of possible safety issues that can be encountered. To further improve the model's ability to identify and address all safety concerns, we plan to investigate scaling up SVs using more training data in future research.
Data-Prep-Kit: getting your data ready for LLM application development
Wood, David, Lublinsky, Boris, Roytman, Alexy, Singh, Shivdeep, Adam, Constantin, Adebayo, Abdulhamid, An, Sungeun, Chang, Yuan Chi, Dang, Xuan-Hong, Desai, Nirmit, Dolfi, Michele, Emami-Gohari, Hajar, Eres, Revital, Goto, Takuya, Joshi, Dhiraj, Koyfman, Yan, Nassar, Mohammad, Patel, Hima, Selvam, Paramesvaran, Shah, Yousaf, Surendran, Saptha, Tsuzuku, Daiki, Zerfos, Petros, Daijavad, Shahrokh
Data preparation is the first and a very important step towards any Large Language Model (LLM) development. This paper introduces an easy-to-use, extensible, and scale-flexible open-source data preparation toolkit called Data Prep Kit (DPK). DPK is architected and designed to enable users to scale their data preparation to their needs. With DPK they can prepare data on a local machine or effortlessly scale to run on a cluster with thousands of CPU Cores. DPK comes with a highly scalable, yet extensible set of modules that transform natural language and code data. If the user needs additional transforms, they can be easily developed using extensive DPK support for transform creation. These modules can be used independently or pipelined to perform a series of operations. In this paper, we describe DPK architecture and show its performance from a small scale to a very large number of CPUs. The modules from DPK have been used for the preparation of Granite Models [1] [2]. We believe DPK is a valuable contribution to the AI community to easily prepare data to enhance the performance of their LLM models or to fine-tune models with Retrieval-Augmented Generation (RAG).
HASSOD: Hierarchical Adaptive Self-Supervised Object Detection
Cao, Shengcao, Joshi, Dhiraj, Gui, Liang-Yan, Wang, Yu-Xiong
The human visual perception system demonstrates exceptional capabilities in learning without explicit supervision and understanding the part-to-whole composition of objects. Drawing inspiration from these two abilities, we propose Hierarchical Adaptive Self-Supervised Object Detection (HASSOD), a novel approach that learns to detect objects and understand their compositions without human supervision. HASSOD employs a hierarchical adaptive clustering strategy to group regions into object masks based on self-supervised visual representations, adaptively determining the number of objects per image. Furthermore, HASSOD identifies the hierarchical levels of objects in terms of composition, by analyzing coverage relations between masks and constructing tree structures. This additional self-supervised learning task leads to improved detection performance and enhanced interpretability. Lastly, we abandon the inefficient multi-round self-training process utilized in prior methods and instead adapt the Mean Teacher framework from semi-supervised learning, which leads to a smoother and more efficient training process. Through extensive experiments on prevalent image datasets, we demonstrate the superiority of HASSOD over existing methods, thereby advancing the state of the art in self-supervised object detection. Notably, we improve Mask AR from 20.2 to 22.5 on LVIS, and from 17.0 to 26.0 on SA-1B. Project page: https://HASSOD-NeurIPS23.github.io.
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Wang, Hanjing, Joshi, Dhiraj, Wang, Shiqiang, Ji, Qiang
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the prediction uncertainties. While current efforts focus on improving uncertainty quantification accuracy and efficiency, there is a need to identify uncertainty sources and take actions to mitigate their effects on predictions. Therefore, we propose to develop explainable and actionable Bayesian deep learning methods to not only perform accurate uncertainty quantification but also explain the uncertainties, identify their sources, and propose strategies to mitigate the uncertainty impacts. Specifically, we introduce a gradient-based uncertainty attribution method to identify the most problematic regions of the input that contribute to the prediction uncertainty. Compared to existing methods, the proposed UA-Backprop has competitive accuracy, relaxed assumptions, and high efficiency. Moreover, we propose an uncertainty mitigation strategy that leverages the attribution results as attention to further improve the model performance. Both qualitative and quantitative evaluations are conducted to demonstrate the effectiveness of our proposed methods.
Business-Aware Visual Concept Discovery from Social Media for Multimodal Business Venue Recognition
Chen, Bor-Chun (University of Maryland) | Chen, Yan-Ying (FX Palo Alto Laboratory) | Chen, Francine (FX Palo Alto Laboratory) | Joshi, Dhiraj (FX Palo Alto Laboratory)
Image localization is important for marketing and recommendation of local business; however, the level of granularity is still a critical issue. Given a consumer photo and its rough GPS information, we are interested in extracting the fine-grained location information, i.e. business venues, of the image. To this end, we propose a novel framework for business venue recognition. The framework mainly contains three parts. First, business-aware visual concept discovery: we mine a set of concepts that are useful for business venue recognition based on three guidelines including business awareness, visually detectable, and discriminative power. We define concepts that satisfy all of these three criteria as business-aware visual concept. Second, business-aware concept detection by convolutional neural networks (BA-CNN): we propose a new network configuration that can incorporate semantic signals mined from business reviews for extracting semantic concept features from a query image. Third, multimodal business venue recognition: we extend visually detected concepts to multimodal feature representations that allow a test image to be associated with business reviews and images from social media for business venue recognition. The experiments results show the visual concepts detected by BA-CNN can achieve up to 22.5% relative improvement for business venue recognition compared to the state-of-the-art convolutional neural network features. Experiments also show that by leveraging multimodal information from social media we can further boost the performance, especially when the database images belonging to each business venue are scarce.