Goto

Collaborating Authors

 Joshi, Aditya


Harnessing Test-time Adaptation for NLU tasks Involving Dialects of English

arXiv.org Artificial Intelligence

Test-time adaptation (TTA) is an excellent method which helps generalize models across domains, tasks, and distributions without the use of labeled datasets. Thus, TTA is very useful in natural language processing (NLP) in the dialectal setting, since oftentimes, models are trained on Standard American English (SAE), evaluated on Indian English or Nigerian English, of which distribution differs significantly from the former. This is especially useful since dialectal datasets are scarce. In this paper, we explore one of the most famous TTA techniques, SHOT, in dialectal NLP. We finetune and evaluate SHOT on different combinations of dialectal GLUE. Our findings show that SHOT is a viable technique when labeled datasets are unavailable. We also theoretically propose the concept of dialectal gap and show that it has a positive correlation with the effectiveness of SHOT. We also find that in many cases, finetuning on SAE yields higher performance than finetuning on dialectal data. Our code is available at https://github.com/dukenguyenxyz/dialect-adaptation


RACCOON: A Retrieval-Augmented Generation Approach for Location Coordinate Capture from News Articles

arXiv.org Artificial Intelligence

Geocoding involves automatic extraction of location coordinates of incidents reported in news articles, and can be used for epidemic intelligence or disaster management. This paper introduces Retrieval-Augmented Coordinate Capture Of Online News articles (RACCOON), an open-source geocoding approach that extracts geolocations from news articles. RACCOON uses a retrieval-augmented generation (RAG) approach where candidate locations and associated information are retrieved in the form of context from a location database, and a prompt containing the retrieved context, location mentions and news articles is fed to an LLM to generate the location coordinates. Our evaluation on three datasets, two underlying LLMs, three baselines and several ablation tests based on the components of RACCOON demonstrate the utility of RACCOON. To the best of our knowledge, RACCOON is the first RAG-based approach for geocoding using pre-trained LLMs.


BESSTIE: A Benchmark for Sentiment and Sarcasm Classification for Varieties of English

arXiv.org Artificial Intelligence

Despite large language models (LLMs) being known to exhibit bias against non-mainstream varieties, there are no known labeled datasets for sentiment analysis of English. To address this gap, we introduce BESSTIE, a benchmark for sentiment and sarcasm classification for three varieties of English: Australian (en-AU), Indian (en-IN), and British (en-UK). Using web-based content from two domains, namely, Google Place reviews and Reddit comments, we collect datasets for these language varieties using two methods: location-based and topic-based filtering. Native speakers of the language varieties manually annotate the datasets with sentiment and sarcasm labels. Subsequently, we fine-tune nine large language models (LLMs) (representing a range of encoder/decoder and mono/multilingual models) on these datasets, and evaluate their performance on the two tasks. Our results reveal that the models consistently perform better on inner-circle varieties (i.e., en-AU and en-UK), with significant performance drops for en-IN, particularly in sarcasm detection. We also report challenges in cross-variety generalisation, highlighting the need for language variety-specific datasets such as ours. BESSTIE promises to be a useful evaluative benchmark for future research in equitable LLMs, specifically in terms of language varieties. The BESSTIE datasets, code, and models are currently available on request, while the paper is under review. Please email aditya.joshi@unsw.edu.au.


Comparison of Multilingual and Bilingual Models for Satirical News Detection of Arabic and English

arXiv.org Artificial Intelligence

Satirical news is real news combined with a humorous comment or exaggerated content, and it often mimics the format and style of real news. However, satirical news is often misunderstood as misinformation, especially by individuals from different cultural and social backgrounds. This research addresses the challenge of distinguishing satire from truthful news by leveraging multilingual satire detection methods in English and Arabic. We explore both zero-shot and chain-of-thought (CoT) prompting using two language models, Jais-chat(13B) and LLaMA-2-chat(7B). Our results show that CoT prompting offers a significant advantage for the Jais-chat model over the LLaMA-2-chat model. Specifically, Jais-chat achieved the best performance, with an F1-score of 80\% in English when using CoT prompting. These results highlight the importance of structured reasoning in CoT, which enhances contextual understanding and is vital for complex tasks like satire detection.


Experiences from Creating a Benchmark for Sentiment Classification for Varieties of English

arXiv.org Artificial Intelligence

Existing benchmarks often fail to account for linguistic diversity, like language variants of English. In this paper, we share our experiences from our ongoing project of building a sentiment classification benchmark for three variants of English: Australian (en-AU), Indian (en-IN), and British (en-UK) English. Using Google Places reviews, we explore the effects of various sampling techniques based on label semantics, review length, and sentiment proportion and report performances on three fine-tuned BERT-based models. Our initial evaluation reveals significant performance variations influenced by sample characteristics, label semantics, and language variety, highlighting the need for nuanced benchmark design. We offer actionable insights for researchers to create robust benchmarks, emphasising the importance of diverse sampling, careful label definition, and comprehensive evaluation across linguistic varieties.


"Is Hate Lost in Translation?": Evaluation of Multilingual LGBTQIA+ Hate Speech Detection

arXiv.org Artificial Intelligence

This paper explores the challenges of detecting LGBTQIA+ hate speech of large language models across multiple languages, including English, Italian, Chinese and (code-switched) English-Tamil, examining the impact of machine translation and whether the nuances of hate speech are preserved across translation. We examine the hate speech detection ability of zero-shot and fine-tuned GPT. Our findings indicate that: (1) English has the highest performance and the code-switching scenario of English-Tamil being the lowest, (2) fine-tuning improves performance consistently across languages whilst translation yields mixed results. Through simple experimentation with original text and machine-translated text for hate speech detection along with a qualitative error analysis, this paper sheds light on the socio-cultural nuances and complexities of languages that may not be captured by automatic translation.


Striking a Balance between Classical and Deep Learning Approaches in Natural Language Processing Pedagogy

arXiv.org Artificial Intelligence

While deep learning approaches represent the state-of-the-art of natural language processing (NLP) today, classical algorithms and approaches still find a place in NLP textbooks and courses of recent years. This paper discusses the perspectives of conveners of two introductory NLP courses taught in Australia and India, and examines how classical and deep learning approaches can be balanced within the lecture plan and assessments of the courses. We also draw parallels with the objects-first and objects-later debate in CS1 education. We observe that teaching classical approaches adds value to student learning by building an intuitive understanding of NLP problems, potential solutions, and even deep learning models themselves. Despite classical approaches not being state-of-the-art, the paper makes a case for their inclusion in NLP courses today.


BAMBINO-LM: (Bilingual-)Human-Inspired Continual Pretraining of BabyLM

arXiv.org Artificial Intelligence

Children from bilingual backgrounds benefit from interactions with parents and teachers to re-acquire their heritage language. In this paper, we investigate how this insight from behavioral study can be incorporated into the learning of small-scale language models. We introduce BAMBINO-LM, a continual pre-training strategy for BabyLM that uses a novel combination of alternation and PPO-based perplexity reward induced from a parent Italian model. Upon evaluation on zero-shot classification tasks for English and Italian, BAMBINO-LM improves the Italian language capability of a BabyLM baseline. Our ablation analysis demonstrates that employing both the alternation strategy and PPO-based modeling is key to this effectiveness gain. We also show that, as a side effect, the proposed method leads to a similar degradation in L1 effectiveness as human children would have had in an equivalent learning scenario. Through its modeling and findings, BAMBINO-LM makes a focused contribution to the pre-training of small-scale language models by first developing a human-inspired strategy for pre-training and then showing that it results in behaviours similar to that of humans.


Spectraformer: A Unified Random Feature Framework for Transformer

arXiv.org Artificial Intelligence

Linearization of attention using various kernel approximation and kernel learning techniques has shown promise. Past methods use a subset of combinations of component functions and weight matrices within the random features paradigm. We identify the need for a systematic comparison of different combinations of weight matrix and component functions for attention learning in Transformer. In this work, we introduce Spectraformer, a unified framework for approximating and learning the kernel function in linearized attention of the Transformer. We experiment with broad classes of component functions and weight matrices for three textual tasks in the LRA benchmark. Our experimentation with multiple combinations of component functions and weight matrices leads us to a novel combination with 23.4% faster training time and 25.2% lower memory consumption over the previous SOTA random feature Transformer, while maintaining the performance, as compared to the Original Transformer. Our code is available at: https://github.com/dukeraphaelng/spectraformer .


Evaluating Dialect Robustness of Language Models via Conversation Understanding

arXiv.org Artificial Intelligence

With an evergrowing number of LLMs reporting superlative performance for English, their ability to perform equitably for different dialects of English (i.e., dialect robustness) needs to be ascertained. Specifically, we use English language (US English or Indian English) conversations between humans who play the word-guessing game of `taboo'. We formulate two evaluative tasks: target word prediction (TWP) (i.e.predict the masked target word in a conversation) and target word selection (TWS) (i.e., select the most likely masked target word in a conversation, from among a set of candidate words). Extending MD3, an existing dialectic dataset of taboo-playing conversations, we introduce M-MD3, a target-word-masked version of MD3 with the USEng and IndEng subsets. We add two subsets: AITrans (where dialectic information is removed from IndEng) and AIGen (where LLMs are prompted to generate conversations). Our evaluation uses pre-trained and fine-tuned versions of two closed-source (GPT-4/3.5) and two open-source LLMs (Mistral and Gemma). LLMs perform significantly better for US English than Indian English for both TWP and TWS, for all settings. While GPT-based models perform the best, the comparatively smaller models work more equitably for short conversations (<8 turns). Our results on AIGen and AITrans (the best and worst-performing subset) respectively show that LLMs may learn a dialect of their own based on the composition of the training data, and that dialect robustness is indeed a challenging task. Our evaluation methodology exhibits a novel way to examine attributes of language models using pre-existing dialogue datasets.