Joren, Hailey
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Joren, Hailey, Zhang, Jianyi, Ferng, Chun-Sung, Juan, Da-Cheng, Taly, Ankur, Rashtchian, Cyrus
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2-10% for Gemini, GPT, and Gemma. Providing Large Language Models (LLMs) with additional context, such as in Retrieval Augmented Generation (RAG) systems, has led to major improvements in LLM factuality and verifiability when adapting to new domains (Lewis et al., 2020). In the case of open-domain question answering, a retrieval model provides context at inference time in the form of snippets or long-form text (Zhu et al., 2021). Then, the model synthesizes the query along with this added context to generate the answer. The ideal outcome is for the LLM to output the correct answer if the provided context contains enough information to answer the question when combined with the model's parametric knowledge. Otherwise, the model should abstain from answering and/or ask for more information. One core challenge in achieving this ideal outcome is building models that can use the provided context only when it helps answer the question correctly. Several works have investigated this issue by evaluating models in the presence of irrelevant information in the context (discussed in Section 2). However, "relevant information" can range from directly containing the answer to simply being topically related Work done during an internship at Google. Work done during an internship at Google. Question: Who is Lya L. married to?
Classification with Conceptual Safeguards
Joren, Hailey, Marx, Charles, Ustun, Berk
We propose a new approach to promote safety in classification tasks with established concepts. Our approach - called a conceptual safeguard - acts as a verification layer for models that predict a target outcome by first predicting the presence of intermediate concepts. Given this architecture, a safeguard ensures that a model meets a minimal level of accuracy by abstaining from uncertain predictions. In contrast to a standard selective classifier, a safeguard provides an avenue to improve coverage by allowing a human to confirm the presence of uncertain concepts on instances on which it abstains. We develop methods to build safeguards that maximize coverage without compromising safety, namely techniques to propagate the uncertainty in concept predictions and to flag salient concepts for human review. We benchmark our approach on a collection of real-world and synthetic datasets, showing that it can improve performance and coverage in deep learning tasks. One of the most promising applications of machine learning is to automate routine tasks that a human can perform.
DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting
Cachay, Salva Rรผhling, Zhao, Bo, Joren, Hailey, Yu, Rose
While diffusion models can successfully generate data and make predictions, they are predominantly designed for static images. We propose an approach for efficiently training diffusion models for probabilistic spatiotemporal forecasting, where generating stable and accurate rollout forecasts remains challenging, Our method, DYffusion, leverages the temporal dynamics in the data, directly coupling it with the diffusion steps in the model. We train a stochastic, time-conditioned interpolator and a forecaster network that mimic the forward and reverse processes of standard diffusion models, respectively. DYffusion naturally facilitates multi-step and long-range forecasting, allowing for highly flexible, continuous-time sampling trajectories and the ability to trade-off performance with accelerated sampling at inference time. In addition, the dynamics-informed diffusion process in DYffusion imposes a strong inductive bias and significantly improves computational efficiency compared to traditional Gaussian noise-based diffusion models. Our approach performs competitively on probabilistic forecasting of complex dynamics in sea surface temperatures, Navier-Stokes flows, and spring mesh systems.
Participatory Personalization in Classification
Joren, Hailey, Nagpal, Chirag, Heller, Katherine, Ustun, Berk
Machine learning models are often personalized with information that is protected, sensitive, self-reported, or costly to acquire. These models use information about people but do not facilitate nor inform their consent. Individuals cannot opt out of reporting personal information to a model, nor tell if they benefit from personalization in the first place. We introduce a family of classification models, called participatory systems, that let individuals opt into personalization at prediction time. We present a model-agnostic algorithm to learn participatory systems for personalization with categorical group attributes. We conduct a comprehensive empirical study of participatory systems in clinical prediction tasks, benchmarking them with common approaches for personalization and imputation. Our results demonstrate that participatory systems can facilitate and inform consent while improving performance and data use across all groups who report personal data.
OCR Graph Features for Manipulation Detection in Documents
Joren, Hailey, Gupta, Otkrist, Raviv, Dan
Detecting manipulations in digital documents is becoming increasingly important for information verification purposes. Due to the proliferation of image editing software, altering key information in documents has become widely accessible. Nearly all approaches in this domain rely on a procedural approach, using carefully generated features and a hand-tuned scoring system, rather than a data-driven and generalizable approach. We frame this issue as a graph comparison problem using the character bounding boxes, and propose a model that leverages graph features using OCR (Optical Character Recognition). Our model relies on a data-driven approach to detect alterations by training a random forest classifier on the graph-based OCR features. We evaluate our algorithm's forgery detection performance on dataset constructed from real business documents with slight forgery imperfections. Our proposed model dramatically outperforms the most closely-related document manipulation detection model on this task.
Probabilistic Bias Mitigation in Word Embeddings
Joren, Hailey, Alvarez-Melis, David
It has been shown that word embeddings derived from large corpora tend to incorporate biases present in their training data. Various methods for mitigating these biases have been proposed, but recent work has demonstrated that these methods hide but fail to truly remove the biases, which can still be observed in word nearest-neighbor statistics. In this work we propose a probabilistic view of word embedding bias. We leverage this framework to present a novel method for mitigating bias which relies on probabilistic observations to yield a more robust bias mitigation algorithm. We demonstrate that this method effectively reduces bias according to three separate measures of bias while maintaining embedding quality across various popular benchmark semantic tasks.