Goto

Collaborating Authors

 Jordan, Michael I.


Gradient Equilibrium in Online Learning: Theory and Applications

arXiv.org Machine Learning

We present a new perspective on online learning that we refer to as gradient equilibrium: a sequence of iterates achieves gradient equilibrium if the average of gradients of losses along the sequence converges to zero. In general, this condition is not implied by nor implies sublinear regret. It turns out that gradient equilibrium is achievable by standard online learning methods such as gradient descent and mirror descent with constant step sizes (rather than decaying step sizes, as is usually required for no regret). Further, as we show through examples, gradient equilibrium translates into an interpretable and meaningful property in online prediction problems spanning regression, classification, quantile estimation, and others. Notably, we show that the gradient equilibrium framework can be used to develop a debiasing scheme for black-box predictions under arbitrary distribution shift, based on simple post hoc online descent updates. We also show that post hoc gradient updates can be used to calibrate predicted quantiles under distribution shift, and that the framework leads to unbiased Elo scores for pairwise preference prediction.


An Optimistic Algorithm for Online Convex Optimization with Adversarial Constraints

arXiv.org Machine Learning

We study Online Convex Optimization (OCO) with adversarial constraints, where an online algorithm must make repeated decisions to minimize both convex loss functions and cumulative constraint violations. We focus on a setting where the algorithm has access to predictions of the loss and constraint functions. Our results show that we can improve the current best bounds of $ O(\sqrt{T}) $ regret and $ \tilde{O}(\sqrt{T}) $ cumulative constraint violations to $ O(\sqrt{E_T(f)}) $ and $ \tilde{O}(\sqrt{E_T(g)}) $, respectively, where $ E_T(f) $ and $ E_T(g) $ represent the cumulative prediction errors of the loss and constraint functions. In the worst case, where $ E_T(f) = O(T) $ and $ E_T(g) = O(T) $ (assuming bounded loss and constraint functions), our rates match the prior $ O(\sqrt{T}) $ results. However, when the loss and constraint predictions are accurate, our approach yields significantly smaller regret and cumulative constraint violations. Notably, if the constraint function remains constant over time, we achieve $ \tilde{O}(1) $ cumulative constraint violation, aligning with prior results.


Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs

arXiv.org Artificial Intelligence

Practitioners have consistently observed three puzzling phenomena in transformer-based large language models (LLMs): attention sinks, value-state drains, and residual-state peaks, collectively referred to as extreme-token phenomena. These phenomena are characterized by certain so-called "sink tokens" receiving disproportionately high attention weights, exhibiting significantly smaller value states, and having much larger residual-state norms than those of other tokens. These extreme tokens give rise to various challenges in LLM inference, quantization, and interpretability. We elucidate the mechanisms behind extreme-token phenomena. First, we show that these phenomena arise in very simple architectures -- transformers with one to three layers -- trained on a toy model, the Bigram-Backcopy (BB) task. In this setting, we identify an active-dormant mechanism, where attention heads become sinks for specific input domains while remaining non-sinks for others. Our theoretical analysis of the training dynamics reveals that these phenomena are driven by a mutual reinforcement mechanism. Building on these insights, we propose strategies to mitigate extreme-token phenomena during pretraining, including replacing softmax with ReLU and Adam with SGD. Next, we extend our analysis to pretrained LLMs, including Llama and OLMo, showing that many attention heads exhibit a similar active-dormant mechanism as in the BB task, and that the mutual reinforcement mechanism also governs the emergence of extreme-token phenomena during LLM pretraining. Our results reveal that many of the static and dynamic properties of extreme-token phenomena predicted by the BB task align with observations in pretrained LLMs.


Dimension-free Private Mean Estimation for Anisotropic Distributions

arXiv.org Machine Learning

We present differentially private algorithms for high-dimensional mean estimation. Previous private estimators on distributions over $\mathbb{R}^d$ suffer from a curse of dimensionality, as they require $\Omega(d^{1/2})$ samples to achieve non-trivial error, even in cases where $O(1)$ samples suffice without privacy. This rate is unavoidable when the distribution is isotropic, namely, when the covariance is a multiple of the identity matrix, or when accuracy is measured with respect to the affine-invariant Mahalanobis distance. Yet, real-world data is often highly anisotropic, with signals concentrated on a small number of principal components. We develop estimators that are appropriate for such signals$\unicode{x2013}$our estimators are $(\varepsilon,\delta)$-differentially private and have sample complexity that is dimension-independent for anisotropic subgaussian distributions. Given $n$ samples from a distribution with known covariance-proxy $\Sigma$ and unknown mean $\mu$, we present an estimator $\hat{\mu}$ that achieves error $\|\hat{\mu}-\mu\|_2\leq \alpha$, as long as $n\gtrsim\mathrm{tr}(\Sigma)/\alpha^2+ \mathrm{tr}(\Sigma^{1/2})/(\alpha\varepsilon)$. In particular, when $\pmb{\sigma}^2=(\sigma_1^2, \ldots, \sigma_d^2)$ are the singular values of $\Sigma$, we have $\mathrm{tr}(\Sigma)=\|\pmb{\sigma}\|_2^2$ and $\mathrm{tr}(\Sigma^{1/2})=\|\pmb{\sigma}\|_1$, and hence our bound avoids dimension-dependence when the signal is concentrated in a few principal components. We show that this is the optimal sample complexity for this task up to logarithmic factors. Moreover, for the case of unknown covariance, we present an algorithm whose sample complexity has improved dependence on the dimension, from $d^{1/2}$ to $d^{1/4}$.


Optimal Design for Reward Modeling in RLHF

arXiv.org Machine Learning

Reinforcement Learning from Human Feedback (RLHF) has become a popular approach to align language models (LMs) with human preferences. This method involves collecting a large dataset of human pairwise preferences across various text generations and using it to infer (implicitly or explicitly) a reward model. Numerous methods have been proposed to learn the reward model and align a LM with it. However, the costly process of collecting human preferences has received little attention and could benefit from theoretical insights. This paper addresses this issue and aims to formalize the reward training model in RLHF. We frame the selection of an effective dataset as a simple regret minimization task, using a linear contextual dueling bandit method. Given the potentially large number of arms, this approach is more coherent than the best-arm identification setting. We then propose an offline framework for solving this problem. Under appropriate assumptions - linearity of the reward model in the embedding space, and boundedness of the reward parameter - we derive bounds on the simple regret. Finally, we provide a lower bound that matches our upper bound up to constant and logarithmic terms. To our knowledge, this is the first theoretical contribution in this area to provide an offline approach as well as worst-case guarantees.


Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy

arXiv.org Machine Learning

Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties. However, LDP applies uniform protection to all data features, including less sensitive ones, which degrades performance of downstream tasks. To overcome this limitation, we propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification. This more nuanced approach complements LDP by adjusting privacy protection according to the sensitivity of each feature, enabling improved performance of downstream tasks without compromising privacy. We characterize the properties of BCDP and articulate its connections with standard non-Bayesian privacy frameworks. We further apply our BCDP framework to the problems of private mean estimation and ordinary least-squares regression. The BCDP-based approach obtains improved accuracy compared to a purely LDP-based approach, without compromising on privacy.


Defection-Free Collaboration between Competitors in a Learning System

arXiv.org Artificial Intelligence

We study collaborative learning systems in which the participants are competitors who will defect from the system if they lose revenue by collaborating. As such, we frame the system as a duopoly of competitive firms who are each engaged in training machine-learning models and selling their predictions to a market of consumers. We first examine a fully collaborative scheme in which both firms share their models with each other and show that this leads to a market collapse with the revenues of both firms going to zero. We next show that one-sided collaboration in which only the firm with the lower-quality model shares improves the revenue of both firms. Finally, we propose a more equitable, *defection-free* scheme in which both firms share with each other while losing no revenue, and we show that our algorithm converges to the Nash bargaining solution.


Fair Allocation in Dynamic Mechanism Design

arXiv.org Artificial Intelligence

We consider a dynamic mechanism design problem where an auctioneer sells an indivisible good to two groups of buyers in every round, for a total of $T$ rounds. The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group. We begin by studying the static case ($T=1$) and establish that the optimal mechanism involves two types of subsidization: one that increases the overall probability of allocation to all buyers, and another that favors the group which otherwise has a lower probability of winning the item. We then extend our results to the dynamic case by characterizing a set of recursive functions that determine the optimal allocation and payments in each round. Notably, our results establish that in the dynamic case, the seller, on the one hand, commits to a participation reward to incentivize truth-telling, and on the other hand, charges an entry fee for every round. Moreover, the optimal allocation once more involves subsidization in favor of one group, where the extent of subsidization depends on the difference in future utilities for both the seller and buyers when allocating the item to one group versus the other. Finally, we present an approximation scheme to solve the recursive equations and determine an approximately optimal and fair allocation efficiently.


Fairness-Aware Meta-Learning via Nash Bargaining

arXiv.org Artificial Intelligence

The traditional formulation of machine learning is in terms of a system that improves its predictive and decision-making performance by interacting with an environment. Such a formulation is overly narrow in emerging applications--it lumps the social context of a learning system into the undifferentiated concept of an "environment" and provides no special consideration of the collective nature of learning. Such social context includes notions of scarcity and conflict, as well as goals such as social norms and collaborative work that are best formulated at the level of social collectives. The neglect of such considerations in traditional machine learning leads to undesirable outcomes in real-world deployments of machine learning systems, including outcomes that favor particular groups of people over others [44, 7, 31, 10, 38, 51], the amplification of social biases and stereotypes [28, 14, 47], and an ongoing lack of clarity regarding issues of communication, trust, and fairness. Our focus is the current paper is fairness, and we take a perspective on fairness that blends learning methodology with economic mechanisms. The current favored methodology for addressing fairness recognizes that it is not a one-size-fits-all concept--different fairness notions are appropriate for different social settings [49, 32, 50]--and treats fairness via meta-learning ideas. Meta-learning is implemented algorithmically with the tools of bi-level optimization. Specifically, fairness-aware metalearning employs outer optimization to align with a specific fairness goal over a small, demographically balanced validation set to adjust a set of hyperparameters, while the inner optimization minimizes the hyperparameter-adjusted training loss [43, 52, 53].


AutoEval Done Right: Using Synthetic Data for Model Evaluation

arXiv.org Artificial Intelligence

The evaluation of machine learning models using human-labeled validation data can be expensive and time-consuming. AI-labeled synthetic data can be used to decrease the number of human annotations required for this purpose in a process called autoevaluation. We suggest efficient and statistically principled algorithms for this purpose that improve sample efficiency while remaining unbiased. These algorithms increase the effective human-labeled sample size by up to 50% on experiments with GPT-4.