Joo, Se June
The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models
Kim, Seungone, Suk, Juyoung, Cho, Ji Yong, Longpre, Shayne, Kim, Chaeeun, Yoon, Dongkeun, Son, Guijin, Cho, Yejin, Shafayat, Sheikh, Baek, Jinheon, Park, Sue Hyun, Hwang, Hyeonbin, Jo, Jinkyung, Cho, Hyowon, Shin, Haebin, Lee, Seongyun, Oh, Hanseok, Lee, Noah, Ho, Namgyu, Joo, Se June, Ko, Miyoung, Lee, Yoonjoo, Chae, Hyungjoo, Shin, Jamin, Jang, Joel, Ye, Seonghyeon, Lin, Bill Yuchen, Welleck, Sean, Neubig, Graham, Lee, Moontae, Lee, Kyungjae, Seo, Minjoon
As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria like helpfulness and harmlessness, which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 103 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval/tree/main/BiGGen-Bench.
The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning
Kim, Seungone, Joo, Se June, Kim, Doyoung, Jang, Joel, Ye, Seonghyeon, Shin, Jamin, Seo, Minjoon
Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.
CoTEVer: Chain of Thought Prompting Annotation Toolkit for Explanation Verification
Kim, Seungone, Joo, Se June, Jang, Yul, Chae, Hyungjoo, Yeo, Jinyoung
Chain-of-thought (CoT) prompting enables large language models (LLMs) to solve complex reasoning tasks by generating an explanation before the final prediction. Despite it's promising ability, a critical downside of CoT prompting is that the performance is greatly affected by the factuality of the generated explanation. To improve the correctness of the explanations, fine-tuning language models with explanation data is needed. However, there exists only a few datasets that can be used for such approaches, and no data collection tool for building them. Thus, we introduce CoTEVer, a tool-kit for annotating the factual correctness of generated explanations and collecting revision data of wrong explanations. Figure 1: Example of Explanation Verification and Answer Furthermore, we suggest several use cases Verification of GPT-3's output. Explanation Verification where the data collected with CoTEVer can requires additional knowledge which makes it be utilized for enhancing the faithfulness of hard for annotators to intuitively write a revised explanation explanations. Our toolkit is publicly available and answer.