Joo, Hanbyul
Learning to Transfer Human Hand Skills for Robot Manipulations
Park, Sungjae, Lee, Seungho, Choi, Mingi, Lee, Jiye, Kim, Jeonghwan, Kim, Jisoo, Joo, Hanbyul
Abstract-- We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations. Unlike existing approaches that solely rely on kinematics information without taking into account the plausibility of robot and object interaction, our method directly infers plausible robot manipulation actions from human motion demonstrations. To address the embodiment gap between the human hand and the robot system, our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion component from others. Our key idea is the generation of pseudo-supervision triplets, which pair human, object, and robot motion trajectories synthetically. Through real-world experiments with robot hand manipulation, we demonstrate that our data-driven retargeting method significantly outperforms conventional retargeting techniques, effectively bridging the embodiment gap between human and robotic hands.
Locomotion-Action-Manipulation: Synthesizing Human-Scene Interactions in Complex 3D Environments
Lee, Jiye, Joo, Hanbyul
Synthesizing interaction-involved human motions has been challenging due to the high complexity of 3D environments and the diversity of possible human behaviors within. We present LAMA, Locomotion-Action-MAnipulation, to synthesize natural and plausible long-term human movements in complex indoor environments. The key motivation of LAMA is to build a unified framework to encompass a series of everyday motions including locomotion, scene interaction, and object manipulation. Unlike existing methods that require motion data "paired" with scanned 3D scenes for supervision, we formulate the problem as a test-time optimization by using human motion capture data only for synthesis. LAMA leverages a reinforcement learning framework coupled with a motion matching algorithm for optimization, and further exploits a motion editing framework via manifold learning to cover possible variations in interaction and manipulation. Throughout extensive experiments, we demonstrate that LAMA outperforms previous approaches in synthesizing realistic motions in various challenging scenarios. Project page: https://jiyewise.github.io/projects/LAMA/ .
CHORUS: Learning Canonicalized 3D Human-Object Spatial Relations from Unbounded Synthesized Images
Han, Sookwan, Joo, Hanbyul
We present a method for teaching machines to understand and model the underlying spatial common sense of diverse human-object interactions in 3D in a self-supervised way. This is a challenging task, as there exist specific manifolds of the interactions that can be considered human-like and natural, but the human pose and the geometry of objects can vary even for similar interactions. Such diversity makes the annotating task of 3D interactions difficult and hard to scale, which limits the potential to reason about that in a supervised way. One way of learning the 3D spatial relationship between humans and objects during interaction is by showing multiple 2D images captured from different viewpoints when humans interact with the same type of objects. The core idea of our method is to leverage a generative model that produces high-quality 2D images from an arbitrary text prompt input as an "unbounded" data generator with effective controllability and view diversity. Despite its imperfection of the image quality over real images, we demonstrate that the synthesized images are sufficient to learn the 3D human-object spatial relations. We present multiple strategies to leverage the synthesized images, including (1) the first method to leverage a generative image model for 3D human-object spatial relation learning; (2) a framework to reason about the 3D spatial relations from inconsistent 2D cues in a self-supervised manner via 3D occupancy reasoning with pose canonicalization; (3) semantic clustering to disambiguate different types of interactions with the same object types; and (4) a novel metric to assess the quality of 3D spatial learning of interaction.
Modeling human intention inference in continuous 3D domains by inverse planning and body kinematics
Qian, Yingdong, Kryven, Marta, Gao, Tao, Joo, Hanbyul, Tenenbaum, Josh
How to build AI that understands human intentions, and uses this knowledge to collaborate with people? We describe a computational framework for evaluating models of goal inference in the domain of 3D motor actions, which receives as input the 3D coordinates of an agent's body, and of possible targets, to produce a continuously updated inference of the intended target. We evaluate our framework in three behavioural experiments using a novel Target Reaching Task, in which human observers infer intentions of actors reaching for targets among distracts. We describe Generative Body Kinematics model, which predicts human intention inference in this domain using Bayesian inverse planning and inverse body kinematics. We compare our model to three heuristics, which formalize the principle of least effort using simple assumptions about the actor's constraints, without the use of inverse planning. Despite being more computationally costly, the Generative Body Kinematics model outperforms the heuristics in certain scenarios, such as environments with obstacles, and at the beginning of reaching actions while the actor is relatively far from the intended target. The heuristics make increasingly accurate predictions during later stages of reaching actions, such as, when the intended target is close, and can be inferred by extrapolating the wrist trajectory. Our results identify contexts in which inverse body kinematics is useful for intention inference. We show that human observers indeed rely on inverse body kinematics in such scenarios, suggesting that modeling body kinematic can improve performance of inference algorithms.
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Grauman, Kristen, Westbury, Andrew, Byrne, Eugene, Chavis, Zachary, Furnari, Antonino, Girdhar, Rohit, Hamburger, Jackson, Jiang, Hao, Liu, Miao, Liu, Xingyu, Martin, Miguel, Nagarajan, Tushar, Radosavovic, Ilija, Ramakrishnan, Santhosh Kumar, Ryan, Fiona, Sharma, Jayant, Wray, Michael, Xu, Mengmeng, Xu, Eric Zhongcong, Zhao, Chen, Bansal, Siddhant, Batra, Dhruv, Cartillier, Vincent, Crane, Sean, Do, Tien, Doulaty, Morrie, Erapalli, Akshay, Feichtenhofer, Christoph, Fragomeni, Adriano, Fu, Qichen, Fuegen, Christian, Gebreselasie, Abrham, Gonzalez, Cristina, Hillis, James, Huang, Xuhua, Huang, Yifei, Jia, Wenqi, Khoo, Weslie, Kolar, Jachym, Kottur, Satwik, Kumar, Anurag, Landini, Federico, Li, Chao, Li, Yanghao, Li, Zhenqiang, Mangalam, Karttikeya, Modhugu, Raghava, Munro, Jonathan, Murrell, Tullie, Nishiyasu, Takumi, Price, Will, Puentes, Paola Ruiz, Ramazanova, Merey, Sari, Leda, Somasundaram, Kiran, Southerland, Audrey, Sugano, Yusuke, Tao, Ruijie, Vo, Minh, Wang, Yuchen, Wu, Xindi, Yagi, Takuma, Zhu, Yunyi, Arbelaez, Pablo, Crandall, David, Damen, Dima, Farinella, Giovanni Maria, Ghanem, Bernard, Ithapu, Vamsi Krishna, Jawahar, C. V., Joo, Hanbyul, Kitani, Kris, Li, Haizhou, Newcombe, Richard, Oliva, Aude, Park, Hyun Soo, Rehg, James M., Sato, Yoichi, Shi, Jianbo, Shou, Mike Zheng, Torralba, Antonio, Torresani, Lorenzo, Yan, Mingfei, Malik, Jitendra
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,025 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 855 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/
Towards Social Artificial Intelligence: Nonverbal Social Signal Prediction in A Triadic Interaction
Joo, Hanbyul, Simon, Tomas, Cikara, Mina, Sheikh, Yaser
We present a new research task and a dataset to understand human social interactions via computational methods, to ultimately endow machines with the ability to encode and decode a broad channel of social signals humans use. This research direction is essential to make a machine that genuinely communicates with humans, which we call Social Artificial Intelligence. We first formulate the "social signal prediction" problem as a way to model the dynamics of social signals exchanged among interacting individuals in a data-driven way. We then present a new 3D motion capture dataset to explore this problem, where the broad spectrum of social signals (3D body, face, and hand motions) are captured in a triadic social interaction scenario. Baseline approaches to predict speaking status, social formation, and body gestures of interacting individuals are presented in the defined social prediction framework.