John Lafferty
Local Minimax Complexity of Stochastic Convex Optimization
sabyasachi chatterjee, John C. Duchi, John Lafferty, Yuancheng Zhu
We extend the traditional worst-case, minimax analysis of stochastic convex optimization by introducing a localized form of minimax complexity for individual functions. Our main result gives function-specific lower and upper bounds on the number of stochastic subgradient evaluations needed to optimize either the function or its "hardest local alternative" to a given numerical precision. The bounds are expressed in terms of a localized and computational analogue of the modulus of continuity that is central to statistical minimax analysis. We show how the computational modulus of continuity can be explicitly calculated in concrete cases, and relates to the curvature of the function at the optimum. We also prove a superefficiency result that demonstrates it is a meaningful benchmark, acting as a computational analogue of the Fisher information in statistical estimation. The nature and practical implications of the results are demonstrated in simulations.
Selective inference for group-sparse linear models
Fan Yang, Rina Foygel Barber, Prateek Jain, John Lafferty
We develop tools for selective inference in the setting of group sparsity, including the construction of confidence intervals and p-values for testing selected groups of variables. Our main technical result gives the precise distribution of the magnitude of the projection of the data onto a given subspace, and enables us to develop inference procedures for a broad class of group-sparse selection methods, including the group lasso, iterative hard thresholding, and forward stepwise regression. We give numerical results to illustrate these tools on simulated data and on health record data.