Not enough data to create a plot.
Try a different view from the menu above.
John C. Duchi
Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences
Hongseok Namkoong, John C. Duchi
We develop efficient solution methods for a robust empirical risk minimization problem designed to give calibrated confidence intervals on performance and provide optimal tradeoffs between bias and variance. Our methods apply to distributionally robust optimization problems proposed by Ben-Tal et al., which put more weight on observations inducing high loss via a worst-case approach over a non-parametric uncertainty set on the underlying data distribution. Our algorithm solves the resulting minimax problems with nearly the same computational cost of stochastic gradient descent through the use of several carefully designed data structures. For a sample of size n, the per-iteration cost of our method scales as O(log n), which allows us to give optimality certificates that distributionally robust optimization provides at little extra cost compared to empirical risk minimization and stochastic gradient methods.
Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation
Matthew O'Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, John C. Duchi
While recent developments in autonomous vehicle (AV) technology highlight substantial progress, we lack tools for rigorous and scalable testing. Real-world testing, the de facto evaluation environment, places the public in danger, and, due to the rare nature of accidents, will require billions of miles in order to statistically validate performance claims. We implement a simulation framework that can test an entire modern autonomous driving system, including, in particular, systems that employ deep-learning perception and control algorithms. Using adaptive importance-sampling methods to accelerate rare-event probability evaluation, we estimate the probability of an accident under a base distribution governing standard traffic behavior. We demonstrate our framework on a highway scenario, accelerating system evaluation by 2-20 times over naive Monte Carlo sampling methods and 10-300P times (where P is the number of processors) over real-world testing.
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino, Silvio Savarese
We are concerned with learning models that generalize well to different unseen domains. We consider a worst-case formulation over data distributions that are near the source domain in the feature space. Only using training data from a single source distribution, we propose an iterative procedure that augments the dataset with examples from a fictitious target domain that is "hard" under the current model. We show that our iterative scheme is an adaptive data augmentation method where we append adversarial examples at each iteration. For softmax losses, we show that our method is a data-dependent regularization scheme that behaves differently from classical regularizers that regularize towards zero (e.g., ridge or lasso). On digit recognition and semantic segmentation tasks, our method learns models improve performance across a range of a priori unknown target domains.
Unlabeled Data Improves Adversarial Robustness
Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, Percy S. Liang
We demonstrate, theoretically and empirically, that adversarial robustness can significantly benefit from semisupervised learning. Theoretically, we revisit the simple Gaussian model of Schmidt et al. [41] that shows a sample complexity gap between standard and robust classification. We prove that unlabeled data bridges this gap: a simple semisupervised learning procedure (self-training) achieves high robust accuracy using the same number of labels required for achieving high standard accuracy.
Privacy Aware Learning
Martin J. Wainwright, Michael I. Jordan, John C. Duchi
We study statistical risk minimization problems under a version of privacy in which the data is kept confidential even from the learner. In this local privacy framework, we establish sharp upper and lower bounds on the convergence rates of statistical estimation procedures. As a consequence, we exhibit a precise tradeoff between the amount of privacy the data preserves and the utility, measured by convergence rate, of any statistical estimator.