John C. Duchi
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino, Silvio Savarese
We are concerned with learning models that generalize well to different unseen domains. We consider a worst-case formulation over data distributions that are near the source domain in the feature space. Only using training data from a single source distribution, we propose an iterative procedure that augments the dataset with examples from a fictitious target domain that is "hard" under the current model. We show that our iterative scheme is an adaptive data augmentation method where we append adversarial examples at each iteration. For softmax losses, we show that our method is a data-dependent regularization scheme that behaves differently from classical regularizers that regularize towards zero (e.g., ridge or lasso). On digit recognition and semantic segmentation tasks, our method learns models improve performance across a range of a priori unknown target domains.
Unlabeled Data Improves Adversarial Robustness
Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, Percy S. Liang
We demonstrate, theoretically and empirically, that adversarial robustness can significantly benefit from semisupervised learning. Theoretically, we revisit the simple Gaussian model of Schmidt et al. [41] that shows a sample complexity gap between standard and robust classification. We prove that unlabeled data bridges this gap: a simple semisupervised learning procedure (self-training) achieves high robust accuracy using the same number of labels required for achieving high standard accuracy.
Privacy Aware Learning
Martin J. Wainwright, Michael I. Jordan, John C. Duchi
We study statistical risk minimization problems under a version of privacy in which the data is kept confidential even from the learner. In this local privacy framework, we establish sharp upper and lower bounds on the convergence rates of statistical estimation procedures. As a consequence, we exhibit a precise tradeoff between the amount of privacy the data preserves and the utility, measured by convergence rate, of any statistical estimator.
Unlabeled Data Improves Adversarial Robustness
Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, Percy S. Liang
We demonstrate, theoretically and empirically, that adversarial robustness can significantly benefit from semisupervised learning. Theoretically, we revisit the simple Gaussian model of Schmidt et al. [41] that shows a sample complexity gap between standard and robust classification. We prove that unlabeled data bridges this gap: a simple semisupervised learning procedure (self-training) achieves high robust accuracy using the same number of labels required for achieving high standard accuracy.
Learning Kernels with Random Features
Aman Sinha, John C. Duchi
Randomized features provide a computationally efficient way to approximate kernel machines in machine learning tasks. However, such methods require a user-defined kernel as input. We extend the randomized-feature approach to the task of learning a kernel (via its associated random features). Specifically, we present an efficient optimization problem that learns a kernel in a supervised manner. We prove the consistency of the estimated kernel as well as generalization bounds for the class of estimators induced by the optimized kernel, and we experimentally evaluate our technique on several datasets. Our approach is efficient and highly scalable, and we attain competitive results with a fraction of the training cost of other techniques.
Local Minimax Complexity of Stochastic Convex Optimization
sabyasachi chatterjee, John C. Duchi, John Lafferty, Yuancheng Zhu
We extend the traditional worst-case, minimax analysis of stochastic convex optimization by introducing a localized form of minimax complexity for individual functions. Our main result gives function-specific lower and upper bounds on the number of stochastic subgradient evaluations needed to optimize either the function or its "hardest local alternative" to a given numerical precision. The bounds are expressed in terms of a localized and computational analogue of the modulus of continuity that is central to statistical minimax analysis. We show how the computational modulus of continuity can be explicitly calculated in concrete cases, and relates to the curvature of the function at the optimum. We also prove a superefficiency result that demonstrates it is a meaningful benchmark, acting as a computational analogue of the Fisher information in statistical estimation. The nature and practical implications of the results are demonstrated in simulations.
Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences
Hongseok Namkoong, John C. Duchi
We develop efficient solution methods for a robust empirical risk minimization problem designed to give calibrated confidence intervals on performance and provide optimal tradeoffs between bias and variance. Our methods apply to distributionally robust optimization problems proposed by Ben-Tal et al., which put more weight on observations inducing high loss via a worst-case approach over a non-parametric uncertainty set on the underlying data distribution. Our algorithm solves the resulting minimax problems with nearly the same computational cost of stochastic gradient descent through the use of several carefully designed data structures. For a sample of size n, the per-iteration cost of our method scales as O(log n), which allows us to give optimality certificates that distributionally robust optimization provides at little extra cost compared to empirical risk minimization and stochastic gradient methods.
Variance-based Regularization with Convex Objectives
Hongseok Namkoong, John C. Duchi
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.