John, Lizy K.
nanoML for Human Activity Recognition
Bacellar, Alan T. L., Jadhao, Mugdha P., Nag, Shashank, Lima, Priscila M. V., Franca, Felipe M. G., John, Lizy K.
Human Activity Recognition (HAR) is critical for applications in healthcare, fitness, and IoT, but deploying accurate models on resource-constrained devices remains challenging due to high energy and memory demands. This paper demonstrates the application of Differentiable Weightless Neural Networks (DWNs) to HAR, achieving competitive accuracies of 96.34% and 96.67% while consuming only 56nJ and 104nJ per sample, with an inference time of just 5ns per sample. The DWNs were implemented and evaluated on an FPGA, showcasing their practical feasibility for energy-efficient hardware deployment. DWNs achieve up to 926,000x energy savings and 260x memory reduction compared to state-of-the-art deep learning methods. These results position DWNs as a nano-machine learning nanoML model for HAR, setting a new benchmark in energy efficiency and compactness for edge and wearable devices, paving the way for ultra-efficient edge AI.
Differentiable Weightless Neural Networks
Bacellar, Alan T. L., Susskind, Zachary, Breternitz, Mauricio Jr., John, Eugene, John, Lizy K., Lima, Priscila M. V., França, Felipe M. G.
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
Shrinking the Giant : Quasi-Weightless Transformers for Low Energy Inference
Nag, Shashank, Bacellar, Alan T. L., Susskind, Zachary, Jha, Anshul, Liberty, Logan, Sivakumar, Aishwarya, John, Eugene B., Kailas, Krishnan, Lima, Priscila M. V., Yadwadkar, Neeraja J., Franca, Felipe M. G., John, Lizy K.
Transformers are set to become ubiquitous with applications ranging from chatbots and educational assistants to visual recognition and remote sensing. However, their increasing computational and memory demands is resulting in growing energy consumption. Building models with fast and energy-efficient inference is imperative to enable a variety of transformer-based applications. Look Up Table (LUT) based Weightless Neural Networks are faster than the conventional neural networks as their inference only involves a few lookup operations. Recently, an approach for learning LUT networks directly via an Extended Finite Difference method was proposed. We build on this idea, extending it for performing the functions of the Multi Layer Perceptron (MLP) layers in transformer models and integrating them with transformers to propose Quasi Weightless Transformers (QuWeiT). This allows for a computational and energy-efficient inference solution for transformer-based models. On I-ViT-T, we achieve a comparable accuracy of 95.64% on CIFAR-10 dataset while replacing approximately 55% of all the multiplications in the entire model and achieving a 2.2x energy efficiency. We also observe similar savings on experiments with the nanoGPT framework.
HLSDataset: Open-Source Dataset for ML-Assisted FPGA Design using High Level Synthesis
Wei, Zhigang, Arora, Aman, Li, Ruihao, John, Lizy K.
Machine Learning (ML) has been widely adopted in design exploration using high level synthesis (HLS) to give a better and faster performance, and resource and power estimation at very early stages for FPGA-based design. To perform prediction accurately, high-quality and large-volume datasets are required for training ML models.This paper presents a dataset for ML-assisted FPGA design using HLS, called HLSDataset. The dataset is generated from widely used HLS C benchmarks including Polybench, Machsuite, CHStone and Rossetta. The Verilog samples are generated with a variety of directives including loop unroll, loop pipeline and array partition to make sure optimized and realistic designs are covered. The total number of generated Verilog samples is nearly 9,000 per FPGA type. To demonstrate the effectiveness of our dataset, we undertake case studies to perform power estimation and resource usage estimation with ML models trained with our dataset. All the codes and dataset are public at the github repo.We believe that HLSDataset can save valuable time for researchers by avoiding the tedious process of running tools, scripting and parsing files to generate the dataset, and enable them to spend more time where it counts, that is, in training ML models.
Neuro-Symbolic AI: An Emerging Class of AI Workloads and their Characterization
Susskind, Zachary, Arden, Bryce, John, Lizy K., Stockton, Patrick, John, Eugene B.
Neuro-symbolic artificial intelligence is a novel area of AI research which seeks to combine traditional rules-based AI approaches with modern deep learning techniques. Neuro-symbolic models have already demonstrated the capability to outperform state-of-the-art deep learning models in domains such as image and video reasoning. They have also been shown to obtain high accuracy with significantly less training data than traditional models. Due to the recency of the field's emergence and relative sparsity of published results, the performance characteristics of these models are not well understood. In this paper, we describe and analyze the performance characteristics of three recent neuro-symbolic models. We find that symbolic models have less potential parallelism than traditional neural models due to complex control flow and low-operational-intensity operations, such as scalar multiplication and tensor addition. However, the neural aspect of computation dominates the symbolic part in cases where they are clearly separable. We also find that data movement poses a potential bottleneck, as it does in many ML workloads.
Demystifying the MLPerf Benchmark Suite
Verma, Snehil, Wu, Qinzhe, Hanindhito, Bagus, Jha, Gunjan, John, Eugene B., Radhakrishnan, Ramesh, John, Lizy K.
MLPerf, an emerging machine learning benchmark suite strives to cover a broad range of applications of machine learning. We present a study on its characteristics and how the MLPerf benchmarks differ from some of the previous deep learning benchmarks like DAWNBench and DeepBench. We find that application benchmarks such as MLPerf (although rich in kernels) exhibit different features compared to kernel benchmarks such as DeepBench. MLPerf benchmark suite contains a diverse set of models which allows unveiling various bottlenecks in the system. Based on our findings, dedicated low latency interconnect between GPUs in multi-GPU systems is required for optimal distributed deep learning training. We also observe variation in scaling efficiency across the MLPerf models. The variation exhibited by the different models highlight the importance of smart scheduling strategies for multi-GPU training. Another observation is that CPU utilization increases with increase in number of GPUs used for training. Corroborating prior work we also observe and quantify improvements possible by compiler optimizations, mixed-precision training and use of Tensor Cores.